Multi-GPU Programming

Paulius Micikevicius | NVIDIA

August 30, 2011

Outline

- Brief review of the scenarios
- Single CPU process, multiple GPUs
 - GPU selection, UVA, P2P
- Multiple processes
 - Needs CPU-side message passing
- Dual-IOH CPU systems and NUMA

Several Scenarios

- We assume CUDA 4.0 or later
 - Simplifies multi-GPU programming
- Working set is decomposed across GPUs
 - Reasons:
 - To speedup computation
 - Working set exceeds single GPU's memory
 - Inter-GPU communication is needed
- Two cases:
 - GPUs within a single network node
 - GPUs across network nodes

Multiple GPUs within a Node

• GPUs can be controlled by:

- A single CPU thread
- Multiple CPU threads belonging to the same process
- Multiple CPU processes

Definitions used:

- CPU process has its own address space
- A process may spawn several threads, which can share address space

Single CPU thread - Multiple GPUs

- All CUDA calls are issued to the *current* GPU
 - One exception: asynchronous peer-to-peer memcopies
- cudaSetDevice() sets the current GPU
- Asynchronous calls (kernels, memcopies) don't block switching the GPU
 - The following code will have both GPUs executing concurrently:

cudaSetDevice(0);
kernel<<<...>>>(...);
cudaSetDevice(1);
kernel<<<...>>(...);

Devices, Streams, and Events

- CUDA streams and events are *per device* (GPU)
 - Determined by the GPU that's current at the time of their creation
 - Each device has its own *default* stream (aka 0- or NULL-stream)
- Using streams and events
 - Calls to a stream can be issued only when its device is current
 - Event can be recorded only to a stream of the same device

Synchronization/query:

- It is OK to synchronize with or query any event/stream
 - Even if stream/event belong to one device and a different device is current

cudaStream_t streamA, streamB; cudaEvent_t eventA, eventB;

cudaSetDevice(0); cudaStreamCreate(&streamA); cudaEventCreaet(&eventA);

cudaSetDevice(1); cudaStreamCreate(&streamB); cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventB, streamB);

cudaEventSynchronize(eventB);

// streamA and eventA belong to device-0

// streamB and eventB belong to device-1

OK:

device-1 is current

• eventB and streamB belong to device-1

cudaStream_t streamA, streamB; cudaEvent_t eventA, eventB;

cudaSetDevice(0); cudaStreamCreate(&streamA); cudaEventCreaet(&eventA);

cudaSetDevice(1); cudaStreamCreate(&streamB); cudaEventCreate(&eventB);

kernel<<<..., streamA>>>(...);
cudaEventRecord(eventB, streamB);

cudaEventSynchronize(eventB);

// streamA and eventA belong to device-0

// streamB and eventB belong to device-1

ERROR:

device-1 is current

streamA belongs to device-0

cudaStream_t streamA, streamB; cudaEvent_t eventA, eventB;

cudaSetDevice(0); cudaStreamCreate(&streamA); cudaEventCreaet(&eventA);

cudaSetDevice(1); cudaStreamCreate(&streamB); cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventA, streamB);

// streamA and eventA belong to device-0

// streamB and eventB belong to device-1

ERROR:

• eventA belongs to device-0

streamB belongs to device-1

<pre>cudaStream_t streamA, streamB; cudaEvent_t eventA, eventB;</pre>	
cudaSetDevice(0); cudaStreamCreate(&streamA); cudaEventCreaet(&eventA);	// streamA and eventA belong to device-0
cudaSetDevice(1); cudaStreamCreate(&streamB); cudaEventCreate(&eventB);	// streamB and eventB belong to device-1
<pre>kernel<<<, streamB>>>(); cudaEventRecord(eventB, streamB);</pre>	device-1 is current
<pre>cudaSetDevice(0); cudaEventSynchronize(eventB); kernel<<<, streamA>>>();</pre>	device-0 is current

cudaStream_t streamA, streamB; cudaEvent_t eventA, eventB; cudaSetDevice(0);

cudaStreamCreate(&streamA); cudaEventCreaet(&eventA);

cudaSetDevice(1); cudaStreamCreate(&streamB); cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventB, streamB);

```
cudaSetDevice( 0 );
cudaEventSynchronize( eventB );
kernel<<<..., streamA>>>(...);
```

// streamA and eventA belong to device-0

// streamB and eventB belong to device-1

OK:

device-0 is current

• synchronizing/querying events/streams of other devices is allowed

cudaStream_t streamA, streamB; cudaEvent_t eventA, eventB;

cudaSetDevice(0); cudaStreamCreate(&streamA); cudaEventCreaet(&eventA);

cudaSetDevice(1); cudaStreamCreate(&streamB); cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventB, streamB);

```
cudaSetDevice( 0 );
cudaEventSynchronize( eventB );
kernel<<<..., streamA>>>(...);
```

// streamA and eventA belong to device-0

// streamB and eventB belong to device-1

OK:

device-0 is current

• synchronizing/querying events/streams of other devices is allowed

• here, device-0 won't start executing the kernel until device-1 finishes its kernel

CUDA 4.0 and Unified Addressing

- CPU and GPU allocations use unified virtual address space
 - Think of each one (CPU, GPU) getting its own range of virtual addresses
 - Thus, driver/device can determine from the address where data resides
 - Allocation still resides on a single device (can't allocate one array across several GPUs)
 - Requires:
 - 64-bit Linux or 64-bit Windows with TCC driver
 - Fermi or later architecture GPUs (compute capability 2.0 or higher)
 - CUDA 4.0 or later
- A GPU can dereference a pointer that is:
 - an address on another GPU
 - an address on the host (CPU)
- More details in the "GPU Direct and UVA" webinar

UVA and Multi-GPU Programming

• Two interesting aspects:

- Peer-to-peer (P2P) memcopies
- Accessing another GPU's addresses

• Both require and peer-access to memory be enabled:

- cudaDeviceEnablePeerAccess(peer_device, 0)
 - Enables current GPU to access addresses on peer_device GPU
- cudaDeviceCanAccessPeer(& accessible, dev_X, dev_Y)
 - Checks whether dev_X can access memory of dev_Y
 - Returns 0/1 via the first argument
 - Peer-access is not available if:
 - One of the GPUs is pre-Fermi
 - GPUs are connected to different Intel IOH chips on the motherboard
 - QPI and PCIe protocols disagree on P2P

```
int gpu1 = 0;
int gpu2 = 1;
cudaSetDevice( gpu1 );
cudaMalloc( &d_A, num_bytes );
int accessible = 0;
cudaDeviceCanAccessPeer( &accessible, gpu2, gpu1 );
if( accessible )
{
    cudaSetDevice( gpu2 );
    cudaDeviceEnablePeerAccess( gpu1, 0 );
    kernel<<<...>>>( d_A);
}
```

Even though kernel executes on gpu2, it will access (via PCIe) memory allocated on gpu1

Peer-to-peer memcopy

cudaMemcpyPeerAsync(void* dst_addr, int dst_dev,

void* src_addr, int src_dev,

size_t num_bytes, cudaStream_t stream)

- Copies the bytes between two devices
- stream must belong to the source GPU
- There is also a blocking (as opposed to Async) version
- If peer-access is enabled:
 - Bytes are transferred along the shortest PCIe path
 - No staging through CPU memory
- If peer-access is not available
 - CUDA driver stages the transfer via CPU memory

How Does P2P Memcopy Help?

Ease of programming

 No need to manually maintain memory buffers on the host for inter-GPU exchanges

Performance

- Especially when communication path does not include IOH (GPUs connected to a PCIe switch):
 - Single-directional transfers achieve up to ~6.6 GB/s
 - Duplex transfers achieve ~12.2 GB/s
 - 4-5 GB/s if going through the host
- Disjoint GPU-pairs can communicate without competing for bandwidth

- 1D decomposition of data set, along the slowest varying dimension (z)
- GPUs have to exchange halos with their left/right neigbhors
- 2-phase approach:
 - Each GPU sends data to the "right"
 - Each GPU sends data to the "left"

Example 6: one 8-GPU node configuration

Example 6: "Right" phase

Example 6: "Right" phase

Example 6: "Right" phase

Example 6: Code Snippet

for(int i=0; i<num_gpus-1; i++) // "right" phase
 cudaMemcpyPeerAsync(d_a[i+1], device[i+1], d_a[i], device[i], num_bytes, stream[i]);</pre>

Example 6: Code Snippet

for(int i=0; i<num_gpus-1; i++) // "right" phase
 cudaMemcpyPeerAsync(d_a[i+1], device[i+1], d_a[i], device[i], num_bytes, stream[i]);</pre>

• Note that a device isn't set prior to each copy – No need as async P2P memcopies use the source device

You may have to insert a device-synchronization between the phases:

- prevents the "last" device from sending in the "right" phase, which would cause link-contention results is correct, some performance is lost
- this can happen because all the calls above are asynchronous

Typical Pattern for Multi-GPU Code

• Stage 1:

- Compute halos (data to be sent to other GPUs)

- Stage 2:
 - Exchange data with other GPUs
 - Use asynchronous copies
 - Compute over internal data
- Synchronize

- These will overlap when issued to different streams
- If compute is longer than exchange then scaling is linear

Summary for Single CPU-thread/multiple-GPUs

- CUDA calls are issued to the current GPU
 - Pay attention to which GPUs streams and events belong
- GPUs can access each other's memory
 - Keep in mind that still at PCIe latency/bandwidth
- P2P memcopies between GPUs enable high aggregate throughputs
 - P2P not possible for GPUs connected to different IOH chips
- Try to overlap communication and computation
 - Issue to different streams

Multiple threads/processes

• Multiple threads of the same process

- Communication is same as single-thread/multiple-GPUs

Multiple processes

- Processes have their own address spaces
 - No matter if they're on the same or different nodes
- Thus, some type of CPU-side message passing (MPI, ...) will be needed
 - Exactly the same as you would use on non-GPU code

Multiple-Processes

- Inter-GPU transfer pattern:
 - D2H memcopy
 - CPU-GPU message passing
 - H2D memcopy
- Pinned memory:
 - Both GPU and network transfers are fastest when operating with <u>pinned</u> CPU memory
 - Pinning prevents memory pages from being swapped out to disk
 - Enables DMA transfers by GPU or network card
- GPU direct:
 - Enables both NVIDIA GPUs and Infiniband devices to share pinned memory
 - Either can DMA from the same pinned memory region
 - Eliminates redundant CPU-CPU copies
 - More details in the "GPU Direct and UVA" webinar

Summary of Cases

		Network nodes	
		Single	Multiple
Single process	Single-threaded		N/A
	Multi-threaded		N/A
Multiple processes			

GPUs can communicate via P2P or shared host memory

GPUs communicate via host-side message passing

Additional System Issues to Consider

- Host (CPU) NUMA affects PCIe transfer throughput in dual-IOH systems
 - Transfers to "remote" GPUs achieve lower throughput
 - One additional QPI hop
 - This affects any PCIe device, not just GPUs
 - Network cards, for example
- When possible, lock CPU threads to a socket that's closest to the GPU's IOH chip
 - For example, by using numactl, GOMP_CPU_AFFINITY, KMP_AFFINITY, etc.
- Number of PCIe hops doesn't seem to affect througput

"Local" H2D Copy: 5.7 GB/s

"Remote" H2D Copy: 4.9 GB/s

"Local" D2H Copy: 6.3 GB/s

"Remote" H2D Copy: 4.3 GB/s

Summary

- CUDA provides a number of features to facilitate multi-GPU programming
- Single-process / multiple GPUs:
 - Unified virtual address space
 - Ability to directly access peer GPU's data
 - Ability to issue P2P memcopies
 - No staging via CPU memory
 - High aggregate throughput for many-GPU nodes
- Multiple-processes:
 - GPU Direct to maximize performance when both PCIe and IB transfers are needed
- Streams and asynchronous kernel/copies
 - Allow overlapping of communication and execution
 - Applies whether using single- or multiple processes to control GPUs
- Keep NUMA in mind on multi-IOH systems

Questions?