
© NVIDIA 2011

Paulius Micikevicius| NVIDIA August 30, 2011

Multi-GPU Programming

© NVIDIA 2011

Outline

• Brief review of the scenarios

• Single CPU process, multiple GPUs

– GPU selection, UVA, P2P

•Multiple processes

– Needs CPU-side message passing

• Dual-IOH CPU systems and NUMA

2

© NVIDIA 2011

Several Scenarios

• We assume CUDA 4.0 or later

– Simplifies multi-GPU programming

• Working set is decomposed across GPUs

– Reasons:

• To speedup computation

• Working set exceeds single GPU’s memory

– Inter-GPU communication is needed

• Two cases:

– GPUs within a single network node

– GPUs across network nodes

3

© NVIDIA 2011

Multiple GPUs within a Node

• GPUs can be controlled by:

– A single CPU thread

– Multiple CPU threads belonging to the same process

– Multiple CPU processes

• Definitions used:

– CPU process has its own address space

– A process may spawn several threads, which can
share address space

4

© NVIDIA 2011

Single CPU thread – Multiple GPUs

• All CUDA calls are issued to the current GPU

– One exception: asynchronous peer-to-peer memcopies

• cudaSetDevice() sets the current GPU

• Asynchronous calls (kernels, memcopies) don’t block switching the GPU

– The following code will have both GPUs executing concurrently:

cudaSetDevice(0);

kernel<<<...>>>(...);

cudaSetDevice(1);

kernel<<<...>>>(...);

5

© NVIDIA 2011

Devices, Streams, and Events

• CUDA streams and events are per device (GPU)

– Determined by the GPU that’s current at the time of their creation

– Each device has its own default stream (aka 0- or NULL-stream)

• Using streams and events

– Calls to a stream can be issued only when its device is current

– Event can be recorded only to a stream of the same device

• Synchronization/query:

– It is OK to synchronize with or query any event/stream

• Even if stream/event belong to one device and a different device is
current

6

© NVIDIA 2011

Example 1

7

cudaStream_t streamA, streamB;
cudaEvent_t eventA, eventB;

cudaSetDevice(0);
cudaStreamCreate(&streamA); // streamA and eventA belong to device-0
cudaEventCreaet(&eventA);

cudaSetDevice(1);
cudaStreamCreate(&streamB); // streamB and eventB belong to device-1
cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventB, streamB);

cudaEventSynchronize(eventB);

OK:
• device-1 is current

• eventB and streamB belong to device-1

© NVIDIA 2011

Example 2

8

cudaStream_t streamA, streamB;
cudaEvent_t eventA, eventB;

cudaSetDevice(0);
cudaStreamCreate(&streamA); // streamA and eventA belong to device-0
cudaEventCreaet(&eventA);

cudaSetDevice(1);
cudaStreamCreate(&streamB); // streamB and eventB belong to device-1
cudaEventCreate(&eventB);

kernel<<<..., streamA>>>(...);
cudaEventRecord(eventB, streamB);

cudaEventSynchronize(eventB);

ERROR:
• device-1 is current

• streamA belongs to device-0

© NVIDIA 2011

Example 3

9

cudaStream_t streamA, streamB;
cudaEvent_t eventA, eventB;

cudaSetDevice(0);
cudaStreamCreate(&streamA); // streamA and eventA belong to device-0
cudaEventCreaet(&eventA);

cudaSetDevice(1);
cudaStreamCreate(&streamB); // streamB and eventB belong to device-1
cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventA, streamB); ERROR:

• eventA belongs to device-0

• streamB belongs to device-1

© NVIDIA 2011

Example 4

10

cudaStream_t streamA, streamB;
cudaEvent_t eventA, eventB;

cudaSetDevice(0);
cudaStreamCreate(&streamA); // streamA and eventA belong to device-0
cudaEventCreaet(&eventA);

cudaSetDevice(1);
cudaStreamCreate(&streamB); // streamB and eventB belong to device-1
cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventB, streamB);

cudaSetDevice(0);
cudaEventSynchronize(eventB);
kernel<<<..., streamA>>>(...);

device-1 is current

device-0 is current

© NVIDIA 2011

Example 4

11

cudaStream_t streamA, streamB;
cudaEvent_t eventA, eventB;

cudaSetDevice(0);
cudaStreamCreate(&streamA); // streamA and eventA belong to device-0
cudaEventCreaet(&eventA);

cudaSetDevice(1);
cudaStreamCreate(&streamB); // streamB and eventB belong to device-1
cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventB, streamB);

cudaSetDevice(0);
cudaEventSynchronize(eventB);
kernel<<<..., streamA>>>(...);

OK:
• device-0 is current

• synchronizing/querying events/streams of

other devices is allowed

• here, device-0 won’t start executing the

kernel until device-1 finishes its kernel

© NVIDIA 2011

Example 4

12

cudaStream_t streamA, streamB;
cudaEvent_t eventA, eventB;

cudaSetDevice(0);
cudaStreamCreate(&streamA); // streamA and eventA belong to device-0
cudaEventCreaet(&eventA);

cudaSetDevice(1);
cudaStreamCreate(&streamB); // streamB and eventB belong to device-1
cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventB, streamB);

cudaSetDevice(0);
cudaEventSynchronize(eventB);
kernel<<<..., streamA>>>(...);

OK:
• device-0 is current

• synchronizing/querying events/streams of

other devices is allowed

• here, device-0 won’t start executing the

kernel until device-1 finishes its kernel

© NVIDIA 2011

CUDA 4.0 and Unified Addressing

• CPU and GPU allocations use unified virtual address space

– Think of each one (CPU, GPU) getting its own range of virtual addresses

• Thus, driver/device can determine from the address where data resides

• Allocation still resides on a single device (can’t allocate one array across several GPUs)

– Requires:

• 64-bit Linux or 64-bit Windows with TCC driver

• Fermi or later architecture GPUs (compute capability 2.0 or higher)

• CUDA 4.0 or later

• A GPU can dereference a pointer that is:

– an address on another GPU

– an address on the host (CPU)

• More details in the “GPU Direct and UVA” webinar

13

© NVIDIA 2011

UVA and Multi-GPU Programming

• Two interesting aspects:

– Peer-to-peer (P2P) memcopies

– Accessing another GPU’s addresses

• Both require and peer-access to memory be enabled:

– cudaDeviceEnablePeerAccess(peer_device, 0)

• Enables current GPU to access addresses on peer_device GPU

– cudaDeviceCanAccessPeer(&accessible, dev_X, dev_Y)

• Checks whether dev_X can access memory of dev_Y

• Returns 0/1 via the first argument

• Peer-access is not available if:

– One of the GPUs is pre-Fermi

– GPUs are connected to different Intel IOH chips on the motherboard

• QPI and PCIe protocols disagree on P2P
14

© NVIDIA 2011

Example 5

15

int gpu1 = 0;
int gpu2 = 1;

cudaSetDevice(gpu1);
cudaMalloc(&d_A, num_bytes);

int accessible = 0;
cudaDeviceCanAccessPeer(&accessible, gpu2, gpu1);
if(accessible)
{

cudaSetDevice(gpu2);
cudaDeviceEnablePeerAccess(gpu1, 0);
kernel<<<...>>>(d_A);

}
Even though kernel executes on

gpu2, it will access (via PCIe)

memory allocated on gpu1

© NVIDIA 2011

Peer-to-peer memcopy

• cudaMemcpyPeerAsync(void* dst_addr, int dst_dev,

void* src_addr, int src_dev,

size_t num_bytes, cudaStream_t stream)

– Copies the bytes between two devices

– stream must belong to the source GPU

– There is also a blocking (as opposed to Async) version

• If peer-access is enabled:

– Bytes are transferred along the shortest PCIe path

– No staging through CPU memory

• If peer-access is not available

– CUDA driver stages the transfer via CPU memory

16

© NVIDIA 2011

How Does P2P Memcopy Help?

• Ease of programming

– No need to manually maintain memory buffers on the host
for inter-GPU exchanges

• Performance

– Especially when communication path does not include IOH
(GPUs connected to a PCIe switch):

• Single-directional transfers achieve up to ~6.6 GB/s

• Duplex transfers achieve ~12.2 GB/s

– 4-5 GB/s if going through the host

– Disjoint GPU-pairs can communicate without competing for
bandwidth

17

© NVIDIA 2011

Example 6

• 1D decomposition of data set, along the
slowest varying dimension (z)

• GPUs have to exchange halos with their
left/right neigbhors

• 2-phase approach:

– Each GPU sends data to the “right”

– Each GPU sends data to the “left”

18

© NVIDIA 2011

19

IOH

Westmere Westmere

GPU-0 GPU-1

PCIe switch

GPU-2 GPU-3

PCIe switch

GPU-4 GPU-5

PCIe switch

GPU-6 GPU-7

PCIe switch

PCIe switch PCIe switch

Example 6: one 8-GPU node configuration

© NVIDIA 2011

20

IOH

Westmere Westmere

GPU-0 GPU-1

PCIe switch

GPU-2 GPU-3

PCIe switch

GPU-4 GPU-5

PCIe switch

GPU-6 GPU-7

PCIe switch

PCIe switch PCIe switch

Example 6: “Right” phase

© NVIDIA 2011

21

IOH

Westmere Westmere

GPU-0 GPU-1

PCIe switch

GPU-2 GPU-3

PCIe switch

GPU-4 GPU-5

PCIe switch

GPU-6 GPU-7

PCIe switch

PCIe switch PCIe switch

Dashed lines: “down” direction of transfer on a PCIe link

Solid lines: “up” direction of transfer on a PCIe link

There are no conflicts on the links – PCIe is duplex

All transfers happen simultaneously

Aggregate throughput: ~42 GB/s

Example 6: “Right” phase

© NVIDIA 2011

22

IOH

Westmere Westmere

GPU-0 GPU-1

PCIe switch

GPU-2 GPU-3

PCIe switch

GPU-4 GPU-5

PCIe switch

GPU-6 GPU-7

PCIe switch

PCIe switch PCIe switch

Dashed lines: “down” direction of transfer on a PCIe link

Solid lines: “up” direction of transfer on a PCIe link

There are no conflicts on the links – PCIe is duplex

All transfers happen simultaneously

Aggregate throughput: ~42 GB/s

Example 6: “Right” phase

© NVIDIA 2011

Example 6: Code Snippet

23

for(int i=0; i<num_gpus-1; i++) // “right” phase
cudaMemcpyPeerAsync(d_a[i+1], device[i+1], d_a[i], device[i], num_bytes, stream[i]);

for(int i=1; i<num_gpus; i++) // “left” phase
cudaMemcpyPeerAsync(d_b[i-1], device[i-1], d_b[i], device[i], num_bytes, stream[i]);

© NVIDIA 2011

Example 6: Code Snippet

• Note that a device isn’t set prior to each copy
– No need as async P2P memcopies use the source device

24

for(int i=0; i<num_gpus-1; i++) // “right” phase
cudaMemcpyPeerAsync(d_a[i+1], device[i+1], d_a[i], device[i], num_bytes, stream[i]);

for(int i=1; i<num_gpus; i++) // “left” phase
cudaMemcpyPeerAsync(d_b[i-1], device[i-1], d_b[i], device[i], num_bytes, stream[i]);

You may have to insert a device-synchronization between the phases:

• prevents the “last” device from sending in the “right” phase, which would cause link-contention
results is correct, some performance is lost

• this can happen because all the calls above are asynchronous

© NVIDIA 2011

Typical Pattern for Multi-GPU Code

• Stage 1:

– Compute halos (data to be sent to other GPUs)

• Stage 2:

– Exchange data with other GPUs

• Use asynchronous copies

– Compute over internal data

• Synchronize

25

• These will overlap when
issued to different streams

• If compute is longer than
exchange then scaling is
linear

© NVIDIA 2011

Summary for Single CPU-thread/multiple-GPUs

• CUDA calls are issued to the current GPU

– Pay attention to which GPUs streams and events belong

• GPUs can access each other’s memory

– Keep in mind that still at PCIe latency/bandwidth

• P2P memcopies between GPUs enable high aggregate
throughputs

– P2P not possible for GPUs connected to different IOH chips

• Try to overlap communication and computation

– Issue to different streams

26

© NVIDIA 2011

Multiple threads/processes

• Multiple threads of the same process

– Communication is same as single-thread/multiple-GPUs

• Multiple processes

– Processes have their own address spaces

• No matter if they’re on the same or different nodes

– Thus, some type of CPU-side message passing (MPI, ...)

will be needed

• Exactly the same as you would use on non-GPU code

27

© NVIDIA 2011

Multiple-Processes

• Inter-GPU transfer pattern:

– D2H memcopy

– CPU-GPU message passing

– H2D memcopy

• Pinned memory:

– Both GPU and network transfers are fastest when operating with pinned CPU
memory

• Pinning prevents memory pages from being swapped out to disk

• Enables DMA transfers by GPU or network card

• GPU direct:

– Enables both NVIDIA GPUs and Infiniband devices to share pinned memory

• Either can DMA from the same pinned memory region

• Eliminates redundant CPU-CPU copies

– More details in the “GPU Direct and UVA” webinar

28

© NVIDIA 2011

Summary of Cases

Network nodes

Single Multiple

Single process
Single-threaded N/A

Multi-threaded N/A

Multiple processes

29

GPUs can communicate via P2P or shared host memory

GPUs communicate via host-side message passing

© NVIDIA 2011

Additional System Issues to Consider

• Host (CPU) NUMA affects PCIe transfer throughput in
dual-IOH systems

– Transfers to “remote” GPUs achieve lower throughput

– One additional QPI hop

– This affects any PCIe device, not just GPUs

• Network cards, for example

• When possible, lock CPU threads to a socket that’s
closest to the GPU’s IOH chip

• For example, by using numactl, GOMP_CPU_AFFINITY, KMP_AFFINITY,
etc.

• Number of PCIe hops doesn’t seem to affect througput

30

© NVIDIA 2011

“Local” H2D Copy: 5.7 GB/s

31

IOH 36D

DRAM DRAM

CPU-1 CPU-0

IOH 36D

GPU-2 GPU-1 GPU-0

© NVIDIA 2011

“Remote” H2D Copy: 4.9 GB/s

32

IOH 36D

DRAM DRAM

CPU-1 CPU-0

IOH 36D

GPU-2 GPU-1 GPU-0

© NVIDIA 2011

“Local” D2H Copy: 6.3 GB/s

33

IOH 36D

DRAM DRAM

CPU-1 CPU-0

IOH 36D

GPU-2 GPU-1 GPU-0

© NVIDIA 2011

“Remote” H2D Copy: 4.3 GB/s

34

IOH 36D

DRAM DRAM

CPU-1 CPU-0

IOH 36D

GPU-2 GPU-1 GPU-0

© NVIDIA 2011

Summary

• CUDA provides a number of features to facilitate multi-GPU programming

• Single-process / multiple GPUs:

– Unified virtual address space

– Ability to directly access peer GPU’s data

– Ability to issue P2P memcopies

• No staging via CPU memory

• High aggregate throughput for many-GPU nodes

• Multiple-processes:

– GPU Direct to maximize performance when both PCIe and IB transfers are needed

• Streams and asynchronous kernel/copies

– Allow overlapping of communication and execution

– Applies whether using single- or multiple processes to control GPUs

• Keep NUMA in mind on multi-IOH systems

35

© NVIDIA 2011

Questions?

36

