
CUDA Warps and OccupancyCUDA Warps and Occupancy

GPU Computing Webinar 7/12/2011

Dr. Justin Luitjens, NVIDIA Corporation

Dr. Steven Rennich, NVIDIA Corporation

Fermi Architecture

SM – Streaming multi-processors with multiple processing cores

Each SM contains 32 processing cores

Execute in a Single Instruction Multiple Thread (SIMT) fashion

Up to 16 SMs on a card for a maximum of 512 compute cores

L2

Global Memory

Registers

L1

SM-N

SMEM

Registers

L1

SM-0

SMEM

Registers

L1

SM-1

SMEM

CUDA Programming Model Review

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

A grid is composed of blocks
which are completely
independent

A block is composed of threads
which can communicate within
their own block

32 threads form a warp

Instructions are issued per warp

If an operand is not ready the
warp will stall

Context switch between warps
when stalled

Context switch must be very fast

Fast Context Switching

Registers and shared memory are allocated for a block as long
as that block is active

Once a block is active it will stay active until all threads in that block have
completed

Context switching is very fast because registers and shared memory do
not need to be saved and restored

Goal: Have enough transactions in flight to saturate the memory
bus

Latency can be hidden by having more transactions in flight

Increase active threads or Instruction Level Parallelism (ILP)

Fermi can have up to 48 active warps per SM (1536 threads)

Maximizing Memory Throughput

Increment of an array of 64M elements
Two accesses per thread (load then store)
The two accesses are dependent, so really 1 access per thread at a time

Tesla C2050, ECC on, theoretical bandwidth: ~120 GB/s

Several independent smaller
accesses have the same effect
as one larger one.

For example:

Four 32-bit ~= one 128-bit

Occupancy

Occupancy = Active Warps / Maximum Active Warps

Remember: resources are allocated for the entire block

Resources are finite

Utilizing too many resources per thread may limit the occupancy

Potential occupancy limiters:

Register usage

Shared memory usage

Block size

Occupancy Limiters: Registers

Register usage: compile with --ptxas-options=-v

Fermi has 32K registers per SM

Example 1

Kernel uses 20 registers per thread (+1 implicit)

Active threads = 32K/21 = 1560 threads

> 1536 thus an occupancy of 1

Example 2

Kernel uses 63 registers per thread (+1 implicit)

Active threads = 32K/64 = 512 threads

512/1536 = .3333 occupancy

Can control register usage with the nvcc flag: --maxrregcount

Occupancy Limiters: Shared Memory

Shared memory usage: compile with --ptxas-options=-v
Reports shared memory per block

Fermi has either 16K or 48K shared memory

Example 1, 48K shared memory
Kernel uses 32 bytes of shared memory per thread

48K/32 = 1536 threads

occupancy=1

Example 2, 16K shared memory
Kernel uses 32 bytes of shared memory per thread

16K/32 = 512 threads

occupancy=.3333

Don’t use too much shared memory

Choose L1/Shared config appropriately.

Occupancy Limiter: Block Size

Each SM can have up to 8 active blocks

A small block size will limit the total number of threads

Avoid small block sizes, generally 128-256 threads is sufficient

Block Size Active Threads Occupancy

32 256 .1666

64 512 .3333

128 1024 .6666

192 1536 1

256 2048 (1536) 1

What Occupancy Do I Need?

Depends on your problem…

Many find 66% is enough to saturate the bandwidth

Look at increasing occupancy only if the following are true!

The kernel is bandwidth bound

The achieved bandwidth is significantly less than peak

Instruction Level Parallelism (ILP) can have a greater effect than
increasing occupancy

Vasily Volkov’s GTC2010 talk “Better Performance at Lower Occupancy”

http://nvidia.fullviewmedia.com/gtc2010/0922-a5-2238.html

Cuda Occupancy Calculator

A tool to help you investigate occupancy

http://developer.download.nvidia.com/compute/cuda/4_0/sdk/doc
s/CUDA_Occupancy_Calculator.xls

Demo: CUDA_Occupancy_calculator.xls

Compute Profiler 4.0

A useful profiling tool which can help you investigate occupancy,
throughput, and bandwidth.

Measures actual occupancy and thus may detect problems that
shouldn’t appear in theory

Demo: computeprof

Summary

In order to achieve peak global memory bandwidth we need to
have enough transactions in flight to hide latency

We can increase the number of transactions by

Increasing occupancy

Increasing instruction level parallelism

Occupancy can be limited by

Register usage

Shared memory usage

Block size

Use the cuda occupancy calculator and the visual profiler to
investigate memory bandwidth/occupancy

Questions?

