Outline

- Overview
- Hardware
- Memory Optimizations
- Execution Configuration Optimizations
- Instruction Optimizations
- Summary
Optimize Algorithms for the GPU

- Maximize independent parallelism
- Maximize arithmetic intensity (math/bandwidth)
- Sometimes it’s better to recompute than to cache
 - GPU spends its transistors on ALUs, not memory
- Do more computation on the GPU to avoid costly data transfers
 - Even low parallelism computations can sometimes be faster than transferring back and forth to host
Optimize Memory Access

- Coalesced vs. Non-coalesced = order of magnitude
 - Global/Local device memory

- Optimize for spatial locality in cached texture memory

- In shared memory, avoid high-degree bank conflicts
Take Advantage of Shared Memory

- Hundreds of times faster than global memory
- Threads can cooperate via shared memory
- Use one / a few threads to load / compute data shared by all threads
- Use it to avoid non-coalesced access
 - Stage loads and stores in shared memory to re-order non-coalesceable addressing
Use Parallelism Efficiently

- Partition your computation to keep the GPU multiprocessors equally busy
 - Many threads, many thread blocks

- Keep resource usage low enough to support multiple active thread blocks per multiprocessor
 - Registers, shared memory
Outline

- Overview
- **Hardware**
- Memory Optimizations
- Execution Configuration Optimizations
- Instruction Optimizations
- Summary
10-Series Architecture

- 240 **Scalar Processor (SP) cores** execute kernel threads
- 30 **Streaming Multiprocessors (SMs)** each contain
 - 8 scalar processors
 - 2 Special Function Units (SFUs)
 - 1 double precision unit
- **Shared memory** enables thread cooperation
Execution Model

Software

Hardware

Threads are executed by scalar processors

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on one multiprocessor - limited by multiprocessor resources (shared memory and register file)

A kernel is launched as a grid of thread blocks

Only one kernel can execute on a device at one time

© NVIDIA Corporation 2009
Warps and Half Warps

A thread block consists of 32-thread warps

A warp is executed physically in parallel (SIMD) on a multiprocessor

A half-warp of 16 threads can coordinate global memory accesses into a single transaction

Thread Block = 32 Threads
Warps
32 Threads
32 Threads
Multiprocessor

Half Warps
16
16

DRAM
Global
Local
Device Memory
Memory Architecture

Host

CPU

Chipset

DRAM

Device

DRAM

Local

Global

Constant

Texture

GPU

Multiprocessor

Multiprocessor

Multiprocessor

Registers

Shared Memory

Constant and Texture Caches
<table>
<thead>
<tr>
<th>Memory</th>
<th>Location</th>
<th>Cached</th>
<th>Access</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register</td>
<td>On-chip</td>
<td>N/A</td>
<td>R/W</td>
<td>One thread</td>
<td>Thread</td>
</tr>
<tr>
<td>Local</td>
<td>Off-chip</td>
<td>No</td>
<td>R/W</td>
<td>One thread</td>
<td>Thread</td>
</tr>
<tr>
<td>Shared</td>
<td>On-chip</td>
<td>N/A</td>
<td>R/W</td>
<td>All threads in a block</td>
<td>Block</td>
</tr>
<tr>
<td>Global</td>
<td>Off-chip</td>
<td>No</td>
<td>R/W</td>
<td>All threads + host</td>
<td>Application</td>
</tr>
<tr>
<td>Constant</td>
<td>Off-chip</td>
<td>Yes</td>
<td>R</td>
<td>All threads + host</td>
<td>Application</td>
</tr>
<tr>
<td>Texture</td>
<td>Off-chip</td>
<td>Yes</td>
<td>R</td>
<td>All threads + host</td>
<td>Application</td>
</tr>
</tbody>
</table>
Outline

- Overview
- Hardware
- Memory Optimizations
 - Data transfers between host and device
 - Device memory optimizations
- Execution Configuration Optimizations
- Instruction Optimizations
- Summary
Host-Device Data Transfers

- **Device to host memory bandwidth much lower than device to device bandwidth**
 - 8 GB/s peak (PCI-e x16 Gen 2) vs. 141 GB/s peak (GTX 280)

- **Minimize transfers**
 - Intermediate data can be allocated, operated on, and deallocated without ever copying them to host memory

- **Group transfers**
 - One large transfer much better than many small ones
Page-Locked Data Transfers

- `cudaMallocHost()` allows allocation of page-locked (“pinned”) host memory

- Enables highest `cudaMemcpy` performance
 - 3.2 GB/s on PCI-e x16 Gen1
 - 5.2 GB/s on PCI-e x16 Gen2

- See the “`bandwidthTest`” CUDA SDK sample

- Use with caution!!
 - Allocating too much page-locked memory can reduce overall system performance
 - Test your systems and apps to learn their limits

© NVIDIA Corporation 2009
Overlapping Data Transfers and Computation

- Async and Stream APIs allow overlap of H2D or D2H data transfers with computation
 - CPU computation can overlap data transfers on all CUDA capable devices
 - Kernel computation can overlap data transfers on devices with “Concurrent copy and execution” (roughly compute capability >= 1.1)

- Stream = sequence of operations that execute in order on GPU
 - Operations from different streams can be interleaved
 - Stream ID used as argument to async calls and kernel launches
Asynchronous Data Transfers

- Asynchronous host-device memory copy returns control immediately to CPU
 - `cudaMemcpyAsync(dst, src, size, dir, stream);`
 - requires *pinned* host memory (allocated with “`cudaMallocHost`”)

- Overlap CPU computation with data transfer
 - `0 = default stream`
  ```
  cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, 0);
  cpuFunction();
  cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, 0);
  cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, 0);
  ```

© NVIDIA Corporation 2009
GPU/CPU Synchronization

Context based
- `cudaThreadSynchronize()`
 - Blocks until all previously issued CUDA calls from a CPU thread complete

Stream based
- `cudaStreamSynchronize(stream)`
 - Blocks until all CUDA calls issued to given stream complete
- `cudaStreamQuery(stream)`
 - Indicates whether stream is idle
 - Returns `cudaSuccess`, `cudaErrorNotReady`, ...
 - Does not block CPU thread
GPU/CPU Synchronization

Stream based using events

- Events can be inserted into streams:

 `cudaEventRecord(event, stream)`

 - Event is recorded when GPU reaches it in a stream
 - Recorded = assigned a timestamp (GPU clocktick)
 - Useful for timing

- `cudaEventSynchronize(event)`

 - Blocks until given event is recorded

- `cudaEventQuery(event)`

 - Indicates whether event has recorded
 - Returns `cudaSuccess`, `cudaErrorNotReady`, ...
 - Does not block CPU thread
Overlapping kernel and data transfer

Requires:
- “Concurrent copy and execute”
 - `deviceOverlap` field of a `cudaDeviceProp` variable
- Kernel and transfer use different, *non-zero* streams
 - A CUDA call to stream-0 blocks until all previous calls complete and cannot be overlapped

Example:

```c
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);
cudaMemcpyAsync(dst, src, size, dir, stream1);
kernel<<<grid, block, 0, stream2>>>(...);
cudaStreamSynchronize(stream2);
```

© NVIDIA Corporation 2009
Zero copy

- Access host memory directly from device code
 - Transfers implicitly performed as needed by device code
 - Introduced in CUDA 2.2
 - Check `canMapHostMemory` field of `cudaDeviceProp` variable
- All set-up is done on host using mapped memory

```c
cudaSetDeviceFlags(cudaDeviceMapHost);
...

cudaHostAlloc((void **)a_h, nBytes,
              cudaHostAllocMapped);
cudaHostGetDevicePointer((void **)a_d, (void *)a_h, 0);
for (i=0; i<N; i++) a_h[i] = i;
increment<<<grid, block>>>(a_d, N);
```
Zero copy considerations

- Zero copy will always be a win for integrated devices that utilize CPU memory (you can check this using the `integrated` field in `cudaDeviceProp`).
- Zero copy will be faster if data is only read/written from/to global memory once, for example:
 - Copy input data to GPU memory
 - Run one kernel
 - Copy output data back to CPU memory
- Potentially easier and faster alternative to using `cudaMemcpyAsync`:
 - For example, can both read and write CPU memory from within one kernel.
- Note that current devices use pointers that are 32-bit so there is a limit of 4GB per context.
Outline

- Overview
- Hardware
- **Memory Optimizations**
 - Data transfers between host and device
 - **Device memory optimizations**
 - Measuring performance – effective bandwidth
 - Coalescing
 - Shared Memory
 - Textures
- Execution Configuration Optimizations
- Instruction Optimizations
- Summary
Theoretical Bandwidth

Device Bandwidth of GTX 280

\[
1107 \times 10^6 \times \frac{(512 \div 8) \times 2}{1024^3} = 131.9 \text{ GB/s}
\]

Specs report 141 GB/s

- Use 10^9 B/GB conversion rather than 1024^3
- Whichever you use, be consistent
Effective Bandwidth (for copying array of N floats)

\[\frac{N \times 4 \text{ B/element}}{1024^3 \times 2 / \text{(time in secs)}} = \text{GB/s} \]
Outline

- Overview
- Hardware
- **Memory Optimizations**
 - Data transfers between host and device
 - **Device memory optimizations**
 - Measuring performance – effective bandwidth
 - Coalescing
 - Shared Memory
 - Textures
- Execution Configuration Optimizations
- Instruction Optimizations
- Summary
Coalescing

- Global memory access of 32, 64, or 128-bit words by a half-warp of threads can result in as few as one (or two) transaction(s) if certain access requirements are met
- Depends on compute capability
 - 1.0 and 1.1 have stricter access requirements
- Float (32-bit) data example:

![Diagram showing global memory access segments](image-url)
Coalescing
Compute capability 1.0 and 1.1

- K-th thread must access k-th word in the segment (or k-th word in 2 contiguous 128B segments for 128-bit words), not all threads need to participate

- Coalesces – 1 transaction

- Out of sequence – 16 transactions

- Misaligned – 16 transactions
Coalescing

Compute capability 1.2 and higher

- Issues transactions for segments of 32B, 64B, and 128B
- Smaller transactions used to avoid wasted bandwidth

1 transaction - 64B segment

2 transactions - 64B and 32B segments

1 transaction - 128B segment
Coalescing Examples

- Effective bandwidth of small kernels that copy data
 - Effects of offset and stride on performance

Two GPUs
- GTX 280
 - Compute capability 1.3
 - Peak bandwidth of 141 GB/s
- FX 5600
 - Compute capability 1.0
 - Peak bandwidth of 77 GB/s
Coalescing Examples

```c
__global__ void offsetCopy(float *odata, float *idata, int offset)
{
    int xid = blockIdx.x * blockDim.x + threadIdx.x + offset;
    odata[xid] = idata[xid];
}
```

![Copy with Offset](image-url)
__global__ void strideCopy(float *odata, float *idata, int stride)
{
 int xid = (blockIdx.x * blockDim.x + threadIdx.x) * stride;
 odata[xid] = idata[xid];
}
Coalescing Examples

- Strided memory access is inherent in many multidimensional problems
 - Stride is generally large (>> 18)

However ...

- Strided access to global memory can be avoided using *shared memory*
Shared Memory

- Hundred times faster than global memory
- Cache data to reduce global memory accesses
- Threads can cooperate via shared memory
- Use it to avoid non-coalesced access
 - Stage loads and stores in shared memory to re-order non-coalesceable addressing
Shared Memory Architecture

- Many threads accessing memory
 - Therefore, memory is divided into **banks**
 - Successive 32-bit words assigned to successive banks

- **Each bank can service one address per cycle**
 - A memory can service as many simultaneous accesses as it has banks

- **Multiple simultaneous accesses to a bank result in a bank conflict**
 - Conflicting accesses are serialized
Bank Addressing Examples

No Bank Conflicts
- Linear addressing stride == 1

No Bank Conflicts
- Random 1:1 Permutation
Bank Addressing Examples

2-way Bank Conflicts
- Linear addressing stride == 2

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread 8
Thread 9
Thread 10
Thread 11

Bank 0
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7
Bank 15

8-way Bank Conflicts
- Linear addressing stride == 8

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 15

Bank 0
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7
Bank 8
Bank 9
Bank 15
Shared memory bank conflicts

- **Shared memory is ~ as fast as registers if there are no bank conflicts**

 - `warp_serialize` profiler signal reflects conflicts

- **The fast case:**
 - If all threads of a half-warp access **different banks**, there is no bank conflict
 - If all threads of a half-warp read the **identical address**, there is no bank conflict (broadcast)

- **The slow case:**
 - Bank Conflict: multiple threads in the same half-warp access the same bank
 - Must serialize the accesses
 - **Cost = max # of simultaneous accesses to a single bank**
Shared Memory Example: Transpose

- Each thread block works on a tile of the matrix
- Naïve implementation exhibits strided access to global memory

Elements transposed by a half-warp of threads
Naïve Transpose

Loads are coalesced, stores are not (strided by height)

```c
__global__ void transposeNaive(float *odata, float *idata, int width, int height)
{
    int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
    int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

    int index_in = xIndex + width * yIndex;
    int index_out = yIndex + height * xIndex;

    odata[index_out] = idata[index_in];
}
```
Coalescing through shared memory

- Access columns of a tile in shared memory to write contiguous data to global memory
- Requires `__syncthreads()` since threads access data in shared memory stored by other threads

Elements transposed by a half-warp of threads
__global__ void transposeCoalesced(float *odata, float *idata,
 int width, int height)
{
 __shared__ float tile[TILE_DIM][TILE_DIM];

 int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
 int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
 int index_in = xIndex + (yIndex)*width;

 xIndex = blockIdx.y * TILE_DIM + threadIdx.x;
 yIndex = blockIdx.x * TILE_DIM + threadIdx.y;
 int index_out = xIndex + (yIndex)*height;

 tile[threadIdx.y][threadIdx.x] = idata[index_in];

 __syncthreads();

 odata[index_out] = tile[threadIdx.x][threadIdx.y];
}
Bank Conflicts in Transpose

- 16x16 shared memory tile of floats
 - Data in columns are in the same bank
 - 16-way bank conflict reading columns in tile
- Solution - pad shared memory array
 - `__shared__ float tile[TILE_DIM][TILE_DIM+1];`
 - Data in anti-diagonals are in same bank

Elements transposed by a half-warp of threads
Outline

- Overview
- Hardware
- **Memory Optimizations**
 - Data transfers between host and device
 - **Device memory optimizations**
 - Measuring performance – effective bandwidth
 - Coalescing
 - Shared Memory
 - **Textures**
- Execution Configuration Optimizations
- Instruction Optimizations
- Summary

© NVIDIA Corporation 2009
Textures in CUDA

Texture is an object for reading data

Benefits:
- Data is cached (optimized for 2D locality)
 - Helpful when coalescing is a problem
- Filtering
 - Linear / bilinear / trilinear interpolation
 - Dedicated hardware
- Wrap modes (for “out-of-bounds” addresses)
 - Clamp to edge / repeat
- Addressable in 1D, 2D, or 3D
 - Using integer or normalized coordinates
Texture Addressing

Wrap

Out-of-bounds coordinate is wrapped (modulo arithmetic)

Clamp

Out-of-bounds coordinate is replaced with the closest boundary

© NVIDIA Corporation 2009
CUDA Texture Types

Bound to linear memory
- Global memory address is bound to a texture
- Only 1D
- Integer addressing
- No filtering, no addressing modes

Bound to CUDA arrays
- Block linear CUDA array is bound to a texture
- 1D, 2D, or 3D
- Float addressing (size-based or normalized)
- Filtering
- Addressing modes (clamping, repeat)

Bound to pitch linear (CUDA 2.2)
- Global memory address is bound to a texture
- 2D
- Float/integer addressing, filtering, and clamp/repeat addressing modes similar to CUDA arrays
CUDA Texturing Steps

Host (CPU) code:
- Allocate/obtain memory (global linear/pitch linear, or CUDA array)
- Create a texture reference object
 - Currently must be at file-scope
- Bind the texture reference to memory/array
- When done:
 - Unbind the texture reference, free resources

Device (kernel) code:
- Fetch using texture reference
- Linear memory textures: `tex1Dfetch()`
- Array textures: `tex1D()` or `tex2D()` or `tex3D()`
- Pitch linear textures: `tex2D()`
Texture Example

```c
__global__ void
shiftCopy(float *odata, 
    float *idata, 
    int  shift)
{
    int xid = blockIdx.x * blockDim.x 
              + threadIdx.x;
    odata[xid] = idata[xid+shift];
}

texture <float> texRef;

__global__ void
textureShiftCopy(float *odata, 
                  float *idata, 
                  int  shift)
{
    int xid = blockIdx.x * blockDim.x 
              + threadIdx.x;
    odata[xid] = tex1Dfetch(texRef, xid+shift);
}
```
Occupancy

- Thread instructions are executed sequentially, so executing other warps is the only way to hide latencies and keep the hardware busy.

- **Occupancy** = Number of warps running concurrently on a multiprocessor divided by maximum number of warps that can run concurrently.

- Limited by resource usage:
 - Registers
 - Shared memory
Blocks per Grid Heuristics

- # of blocks > # of multiprocessors
 - So all multiprocessors have at least one block to execute

- # of blocks / # of multiprocessors > 2
 - Multiple blocks can run concurrently in a multiprocessor
 - Blocks that aren’t waiting at a __syncthreads() keep the hardware busy
 - Subject to resource availability – registers, shared memory

- # of blocks > 100 to scale to future devices
 - Blocks executed in pipeline fashion
 - 1000 blocks per grid will scale across multiple generations
Register Dependency

Read-after-write register dependency
- Instruction’s result can be read ~24 cycles later

Scenarios:

CUDA:
```
x = y + 5;
z = x + 3;
s_data[0] += 3;
```

PTX:
```
add.f32 $f3, $f1, $f2
add.f32 $f5, $f3, $f4
ld.shared.f32 $f3, [$r31+0]
add.f32 $f3, $f3, $f4
```

To completely hide the latency:
- Run at least 192 threads (6 warps) per multiprocessor
- At least 25% occupancy (1.0/1.1), 18.75% (1.2/1.3)
- Threads do not have to belong to the same thread block
Register Pressure

- **Hide latency by using more threads per multiprocessor**

Limiting Factors:
- Number of registers per kernel
 - 8K/16K per multiprocessor, partitioned among concurrent threads
- Amount of shared memory
 - 16KB per multiprocessor, partitioned among concurrent threadblocks

Compile with `--ptxas-options=-v` **flag**

Use `--maxrregcount=N` **flag to NVCC**

- \(N = \) desired maximum registers / kernel
- At some point “spilling” into local memory may occur
 - Reduces performance – local memory is slow
CUDA GPU Occupancy Calculator

1. Just follow steps 1, 2, and 3 below (or click here for help)
2. Select a GPU from the list (click)
3. Enter your resource usage:
 - Threads Per Block
 - Registers Per Thread
 - Shared Memory Per Block (bytes)
4. Click
5. GPU Occupancy Data is displayed here and in the graphs:
 - Active Threads per Multiprocessor
 - Active Warps per Multiprocessor
 - Occupancy of each Multiprocessor
 - Maximum Simultaneous Blocks per GPU
6. (Note: This assumes there are at least this many blocks)
7. Physical limits for GPU
8. Multiplications per GPU
9. Threads (per warp)
10. Warps (per multiprocessor)
11. Thrads (multithreaded)
12. Thread Blocks (per multiprocessor)
13. Threads (multithreaded for each)
14. Total # of 32-bit registers (per multiprocessor)
15. Shared Memory (per multiprocessor) (bytes)
16. Allocation Per Thread Block
 - Warps
 - Registers
 - Shared Memory
17. These data are used in computing the occupancy data in blue
18. Maximum Thread Blocks Per Multiprocessor
19. Occupancy by Warps Per Multiprocessor
20. Occupancy by Registers Per Multiprocessor
21. Occupancy by Shared Memory Per Multiprocessor
22. Thread Blocks Limit Per Multiprocessor is the minimum of these 3
23. CUDA Occupancy Calculator
24. Minimum
25. 54
26. Copyright and License
27. Start

© NVIDIA Corporation 2009
Optimizing threads per block

- Choose threads per block as a multiple of warp size
 - Avoid wasting computation on under-populated warps
 - Facilitates coalescing
- Want to run as many warps as possible per multiprocessor (hide latency)
- Multiprocessor can run up to 8 blocks at a time

Heuristics
- Minimum: 64 threads per block
 - Only if multiple concurrent blocks
- 192 or 256 threads a better choice
 - Usually still enough regs to compile and invoke successfully
- This all depends on your computation, so experiment!
Occupancy != Performance

Increasing occupancy does not necessarily increase performance

BUT ...

Low-occupancy multiprocessors cannot adequately hide latency on memory-bound kernels

(It all comes down to arithmetic intensity and available parallelism)
Parameterize Your Application

Parameterization helps adaptation to different GPUs

GPUs vary in many ways
- # of multiprocessors
- Memory bandwidth
- Shared memory size
- Register file size
- Max. threads per block

You can even make apps self-tuning (like FFTW and ATLAS)
- “Experiment” mode discovers and saves optimal configuration
CUDA Instruction Performance

- Instruction cycles (per warp) = sum of
 - Operand read cycles
 - Instruction execution cycles
 - Result update cycles

- Therefore instruction throughput depends on
 - Nominal instruction throughput
 - Memory latency
 - Memory bandwidth

- “Cycle” refers to the multiprocessor clock rate
 - 1.3 GHz on the Tesla C1060, for example
Maximizing Instruction Throughput

- **Maximize use of high-bandwidth memory**
 - Maximize use of shared memory
 - Minimize accesses to global memory
 - Maximize coalescing of global memory accesses

- **Optimize performance by overlapping memory accesses with HW computation**
 - High arithmetic intensity programs
 - i.e. high ratio of math to memory transactions
 - Many concurrent threads
Arithmetic Instruction Throughput

- **int and float** add, shift, min, max and float mul, mad: 4 cycles per warp
 - int multiply (*) is by default 32-bit
 - requires multiple cycles / warp
 - Use __mul24() / __umul24() intrinsics for 4-cycle 24-bit int multiply

- **Integer divide and modulo** are more expensive
 - Compiler will convert literal power-of-2 divides to shifts
 - But we have seen it miss some cases
 - Be explicit in cases where compiler can’t tell that divisor is a power of 2!
 - Useful trick: foo%n==foo&(n−1) if n is a power of 2

© NVIDIA Corporation 2009
There are two types of runtime math operations in single precision

- `__funcf()` : direct mapping to hardware ISA
 - Fast but lower accuracy (see prog. guide for details)
 - Examples: `__sinf(x)`, `__expf(x)`, `__powf(x, y)`

- `funcf()` : compile to multiple instructions
 - Slower but higher accuracy (5 ulp or less)
 - Examples: `sinf(x)`, `expf(x)`, `powf(x, y)`

The `-use_fast_math` compiler option forces every `funcf()` to compile to `__funcf()`
GPU results may not match CPU

- Many variables: hardware, compiler, optimization settings

- CPU operations aren’t strictly limited to 0.5 ulp
 - Sequences of operations can be more accurate due to 80-bit extended precision ALUs

- Floating-point arithmetic is not associative!
FP Math is Not Associative!

- In symbolic math, \((x+y)+z = x+(y+z)\)
- This is not necessarily true for floating-point addition
 - Try \(x = 10^{30}, y = -10^{30}\) and \(z = 1\) in the above equation

- When you parallelize computations, you potentially change the order of operations

- Parallel results may not exactly match sequential results
 - This is not specific to GPU or CUDA – inherent part of parallel execution
Control Flow Instructions

- **Main performance concern with branching is divergence**
 - Threads within a single warp take different paths
 - Different execution paths must be serialized

- **Avoid divergence when branch condition is a function of thread ID**
 - Example with divergence:
    ```c
    if (threadIdx.x > 2) { }
    ```
 - Branch granularity < warp size
 - Example without divergence:
    ```c
    if (threadIdx.x / WARP_SIZE > 2) { }
    ```
 - Branch granularity is a whole multiple of warp size
Summary

GPU hardware can achieve great performance on data-parallel computations if you follow a few simple guidelines:

- Use parallelism efficiently
- Coalesce memory accesses if possible
- Take advantage of shared memory
- Explore other memory spaces
 - Texture
 - Constant
- Reduce bank conflicts
Special CUDA Developer Offer on Tesla GPUs

- 50% off MSRP on Tesla C1060 GPUs
- Up to four per developer
- Act now, limited time offer

If you are outside of US or Canada, please contact an NVIDIA Tesla Preferred Provider in your country