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Optimize Algorithms for the GPU

Maximize independent parallelism

Maximize arithmetic intensity (math/bandwidth)

Sometimes it’s better to recompute than to cache
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Sometimes it’s better to recompute than to cache

GPU spends its transistors on ALUs, not memory

Do more computation on the GPU to avoid costly 
data transfers

Even low parallelism computations can sometimes be faster 
than transferring back and forth to host



Optimize Memory Access

Coalesced vs. Non-coalesced = order of magnitude

Global/Local device memory 

Optimize for spatial locality in cached texture 
memory
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memory

In shared memory, avoid high-degree bank conflicts



Take Advantage of Shared Memory

Hundreds of times faster than global memory

Threads can cooperate via shared memory

Use one / a few threads to load / compute data 
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Use one / a few threads to load / compute data 
shared by all threads

Use it to avoid non-coalesced access
Stage loads and stores in shared memory to re-order non-
coalesceable addressing



Use Parallelism Efficiently

Partition your computation to keep the GPU 
multiprocessors equally busy

Many threads, many thread blocks

Keep resource usage low enough to support multiple 

© NVIDIA Corporation 2009 6

Keep resource usage low enough to support multiple 
active thread blocks per multiprocessor

Registers, shared memory
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10-Series Architecture

240 Scalar Processor (SP) cores execute kernel threads

30 Streaming Multiprocessors (SMs) each contain

8 scalar processors

2 Special Function Units (SFUs)

1 double precision unit

Shared memory enables thread cooperation
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Scalar
Processors

Multiprocessor

Shared
Memory

Double



Execution Model

Software Hardware

Threads are executed by scalar processors

Thread

Scalar 
Processor

Thread blocks are executed on multiprocessors

Thread blocks do not migrate
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Thread 
Block Multiprocessor

Thread blocks do not migrate

Several concurrent thread blocks can reside on 
one multiprocessor - limited by multiprocessor 
resources (shared memory and register file)

...

Grid Device

A kernel is launched as a grid of thread blocks

Only one kernel can execute on a device at one 
time



Warps and Half Warps

Thread 
Block Multiprocessor

32 Threads

32 Threads

32 Threads

...

Warps

A thread block consists of 32-
thread warps

A warp is executed physically in 
parallel (SIMD) on a 
multiprocessor

=
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16

Half Warps

16

DRAM

Global

Local

Device 
Memory

A half-warp of 16 threads can 
coordinate global memory 
accesses into a single transaction



Memory Architecture

Host

CPU

Chipset

Device

DRAM

Global

Local

GPU

Multiprocessor

Registers

Shared Memory

Multiprocessor

Registers

Shared Memory

Multiprocessor

Registers

Shared Memory
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DRAM

Global

Constant

Texture

Shared Memory

Constant and Texture 
Caches



Memory Architecture

Memory Location Cached Access Scope Lifetime

Register On-chip N/A R/W One thread Thread

Local Off-chip No R/W One thread Thread
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Local Off-chip No R/W One thread Thread

Shared On-chip N/A R/W All threads in a block Block

Global Off-chip No R/W All threads + host Application

Constant Off-chip Yes R All threads + host Application

Texture Off-chip Yes R All threads + host Application
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Host-Device Data Transfers

Device to host memory bandwidth much lower than 
device to device bandwidth

8 GB/s peak (PCI-e x16 Gen 2) vs. 141 GB/s peak (GTX 280)

Minimize transfers
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Minimize transfers

Intermediate data can be allocated, operated on, and 
deallocated without ever copying them to host memory

Group transfers

One large transfer much better than many small ones



Page-Locked Data Transfers

cudaMallocHost() allows allocation of page-
locked (“pinned”) host memory

Enables highest cudaMemcpy performance
3.2 GB/s on PCI-e x16 Gen1
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5.2 GB/s on PCI-e x16 Gen2

See the “bandwidthTest” CUDA SDK sample

Use with caution!!
Allocating too much page-locked memory can reduce 
overall system performance

Test your systems and apps to learn their limits



Overlapping Data Transfers and 
Computation

Async and Stream APIs allow overlap of H2D or D2H 
data transfers with computation

CPU computation can overlap data transfers on all CUDA 
capable devices

Kernel computation can overlap data transfers on devices 
with “Concurrent copy and execution” (roughly compute 
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with “Concurrent copy and execution” (roughly compute 
capability >= 1.1)

Stream = sequence of operations that execute in 
order on GPU

Operations from different streams can be interleaved

Stream ID used as argument to async calls and kernel 
launches



Asynchronous host-device memory copy returns 
control immediately to CPU

cudaMemcpyAsync(dst, src, size, dir, stream); 

requires pinned host memory (allocated with 
“cudaMallocHost”) 

Asynchronous Data Transfers 
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Overlap CPU computation with data transfer

0 = default stream

cudaMemcpyAsync(a_d, a_h, size, 

cudaMemcpyHostToDevice, 0);

cpuFunction();

cudaThreadSynchronize();

kernel<<<grid, block>>>(a_d);

17

overlapped



GPU/CPU Synchronization

Context based

cudaThreadSynchronize()

Blocks until all previously issued CUDA calls from a 
CPU thread complete

Stream based
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Stream based

cudaStreamSynchronize(stream)

Blocks until all CUDA calls issued to given stream 
complete

cudaStreamQuery(stream)

Indicates whether stream is idle

Returns cudaSuccess, cudaErrorNotReady, ...

Does not block CPU thread



GPU/CPU Synchronization

Stream based using events

Events can be inserted into streams:

cudaEventRecord(event, stream)

Event is recorded when GPU reaches it in a stream

Recorded = assigned a timestamp (GPU clocktick)

Useful for timing
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cudaEventSynchronize(event)

Blocks until given event is recorded

cudaEventQuery(event)

Indicates whether event has recorded

Returns cudaSuccess, cudaErrorNotReady, ...

Does not block CPU thread



Overlapping kernel and data transfer

Requires:

“Concurrent copy and execute”

deviceOverlap field of a cudaDeviceProp variable

Kernel and transfer use different, non-zero streams

A CUDA call to stream-0 blocks until all previous calls 
complete and cannot be overlapped
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complete and cannot be overlapped

Example:

cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst, src, size, dir, stream1);

kernel<<<grid, block, 0, stream2>>>(…);

cudaStreamSynchronize(stream2);

overlapped



Zero copy

Access host memory directly from device code

Transfers implicitly performed as needed by device code

Introduced in CUDA 2.2

Check canMapHostMemory field of cudaDeviceProp variable

All set-up is done on host using mapped memory
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cudaSetDeviceFlags(cudaDeviceMapHost);

...

cudaHostAlloc((void **)&a_h, nBytes, 

cudaHostAllocMapped);

cudaHostGetDevicePointer((void **)&a_d, (void *)a_h, 0);

for (i=0; i<N; i++) a_h[i] = i;

increment<<<grid, block>>>(a_d, N);



Zero copy considerations

Zero copy will always be a win for integrated devices 
that utilize CPU memory (you can check this using the 
integrated field in cudaDeviceProp)

Zero copy will be faster if data is only read/written 
from/to global memory once, for example:

Copy input data to GPU memory

Run one kernel
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Run one kernel

Copy output data back to CPU memory

Potentially easier and faster alternative to using 
cudaMemcpyAsync

For example, can both read and write CPU memory from 
within one kernel

Note that current devices use pointers that are 32-bit 
so there is a limit of 4GB per context
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Theoretical Bandwidth

Device Bandwidth of GTX 280

1107 * 106 *  (512 / 8) * 2 / 10243 =  131.9 GB/s

DDR
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Specs report 141 GB/s 

Use 109 B/GB conversion rather than 10243

Whichever you use, be consistent

Memory
clock (Hz)

Memory
interface
(bytes)



Effective Bandwidth

Effective Bandwidth (for copying array of N floats)

N * 4 B/element / 10243 * 2 / (time in secs) = GB/s  

Array size Read and
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Array size
(bytes)

Read and
write

B/GB
(or 109)
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Coalescing

Global memory access of 32, 64, or 128-bit words by a half-
warp of threads can result in as few as one (or two) 
transaction(s) if certain access requirements are met

Depends on compute capability

1.0 and 1.1 have stricter access requirements

Float (32-bit) data example:
32-byte segments
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Global Memory

Half-warp of threads

64-byte segments

128-byte segments

……



Coalescing
Compute capability 1.0 and 1.1

K-th thread must access k-th word in the segment (or k-th word in 2 
contiguous 128B segments for 128-bit words), not all threads need to 
participate

Coalesces – 1 transaction

……
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Out of sequence – 16 transactions

Misaligned – 16 transactions

……

……



Coalescing
Compute capability 1.2 and higher

1 transaction - 64B segment

Issues transactions for segments of 32B, 64B, and 128B

Smaller transactions used to avoid wasted bandwidth

……
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2 transactions - 64B and 32B segments 

1 transaction - 128B segment

……

……



Coalescing Examples

Effective bandwidth of small kernels that copy data

Effects of offset and stride on performance

Two GPUs

GTX 280

Compute capability 1.3
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Compute capability 1.3

Peak bandwidth of 141 GB/s

FX 5600

Compute capability 1.0

Peak bandwidth of 77 GB/s



Coalescing Examples

__global__ void offsetCopy(float *odata, float *idata,  

int offset)

{  

int xid = blockIdx.x * blockDim.x + threadIdx.x + offset;  

odata[xid] = idata[xid];

}

© NVIDIA Corporation 2009 31



Coalescing Examples

__global__ void strideCopy(float *odata, float *idata,  

int stride)

{  

int xid = (blockIdx.x*blockDim.x + threadIdx.x)*stride;  

odata[xid] = idata[xid];

}
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Coalescing Examples

Strided memory access is 
inherent in many 
multidimensional problems

Stride is generally large 
(>> 18)
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However …

Strided access to global 
memory can be avoided 
using shared memory
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Shared Memory

~Hundred times faster than global memory

Cache data to reduce global memory accesses

Threads can cooperate via shared memory
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Threads can cooperate via shared memory

Use it to avoid non-coalesced access
Stage loads and stores in shared memory to re-order non-
coalesceable addressing



Shared Memory Architecture

Many threads accessing memory

Therefore, memory is divided into banks

Successive 32-bit words assigned to successive banks

Each bank can service one address per cycle

A memory can service as many simultaneous 
Bank 0
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A memory can service as many simultaneous 
accesses as it has banks

Multiple simultaneous accesses to a bank
result in a bank conflict 

Conflicting accesses are serialized

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0



Bank Addressing Examples

No Bank Conflicts

Linear addressing 
stride == 1

No Bank Conflicts

Random 1:1 Permutation

Bank 2
Bank 1
Bank 0

Thread 2
Thread 1
Thread 0

Bank 2
Bank 1
Bank 0

Thread 2
Thread 1
Thread 0
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Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2



Bank Addressing Examples

2-way Bank Conflicts

Linear addressing 
stride == 2

8-way Bank Conflicts

Linear addressing stride == 8

Thread 2
Thread 1
Thread 0

Bank 2
Bank 1
Bank 0

Thread 2
Thread 1
Thread 0

Bank 2
Bank 1
Bank 0

x8
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Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

x8



Shared memory bank conflicts

Shared memory is ~ as fast as registers if there are no bank 
conflicts

warp_serialize profiler signal reflects conflicts

The fast case:

If all threads of a half-warp access different banks, there is no 
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If all threads of a half-warp access different banks, there is no 
bank conflict

If all threads of a half-warp read the identical address, there is no 
bank conflict (broadcast)

The slow case:

Bank Conflict: multiple threads in the same half-warp access the 
same bank

Must serialize the accesses

Cost = max # of simultaneous accesses to a single bank



Shared Memory Example: Transpose

Each thread block works on a tile of the matrix

Naïve implementation exhibits strided access to 
global memory

idata odata
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idata odata

Elements transposed by a half-warp of threads



Naïve Transpose

Loads are coalesced, stores are not (strided by 
height) 

__global__ void transposeNaive(float *odata, float *idata, 

int width, int height)

{

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
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idata odata

int index_in = xIndex + width * yIndex;

int index_out = yIndex + height * xIndex;

odata[index_out] = idata[index_in];

}



Coalescing through shared memory

Access columns of a tile in shared memory to write 
contiguous data to global memory

Requires __syncthreads() since threads access 

data in shared memory stored by other threads

idata odata
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Elements transposed by a half-warp of threads

idata odata
tile



__global__ void transposeCoalesced(float *odata, float *idata,      

int width, int height)

{

__shared__ float tile[TILE_DIM][TILE_DIM];

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index_in = xIndex + (yIndex)*width;

Coalescing through shared memory
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xIndex = blockIdx.y * TILE_DIM + threadIdx.x;  

yIndex = blockIdx.x * TILE_DIM + threadIdx.y;  

int index_out = xIndex + (yIndex)*height;  

tile[threadIdx.y][threadIdx.x] = idata[index_in];

__syncthreads();

odata[index_out] = tile[threadIdx.x][threadIdx.y];

}



Bank Conflicts in Transpose

16x16 shared memory tile of floats

Data in columns are in the same bank

16-way bank conflict reading columns in tile  

Solution - pad shared memory array
__shared__ float tile[TILE_DIM][TILE_DIM+1];

Data in anti-diagonals are in same bank 
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Data in anti-diagonals are in same bank 

Elements transposed by a half-warp of threads

idata odata
tile
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Textures in CUDA

Texture is an object for reading data

Benefits:
Data is cached (optimized for 2D locality)

Helpful when coalescing is a problem

Filtering
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Linear / bilinear / trilinear interpolation 

Dedicated hardware

Wrap modes (for “out-of-bounds” addresses)
Clamp to edge / repeat

Addressable in 1D, 2D, or 3D
Using integer or normalized coordinates



Texture Addressing

Wrap Clamp

0    1    2    3    4

1

2

3

0
(2.5, 0.5)
(1.0, 1.0)
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Out-of-bounds coordinate is 
wrapped (modulo arithmetic)

Out-of-bounds coordinate is 
replaced with the closest 
boundary

0    1    2    3    4

1

2

3

0
(5.5, 1.5)

0    1    2    3    4

1

2

3

0
(5.5, 1.5)



CUDA Texture Types

Bound to linear memory
Global memory address is bound to a texture

Only 1D

Integer addressing

No filtering, no addressing modes

Bound to CUDA arrays
Block linear CUDA array is bound to a texture
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Block linear CUDA array is bound to a texture

1D, 2D, or 3D

Float addressing (size-based or normalized)

Filtering

Addressing modes (clamping, repeat)

Bound to pitch linear (CUDA 2.2)
Global memory address is bound to a texture

2D

Float/integer addressing, filtering, and clamp/repeat 
addressing modes similar to CUDA arrays



CUDA Texturing Steps

Host (CPU) code:

Allocate/obtain memory (global linear/pitch linear, or CUDA 
array)

Create a texture reference object

Currently must be at file-scope

Bind the texture reference to memory/array

When done:
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When done:

Unbind the texture reference, free resources

Device (kernel) code:
Fetch using texture reference

Linear memory textures: tex1Dfetch()

Array textures: tex1D() or tex2D() or tex3D()

Pitch linear textures: tex2D()



Texture Example

__global__ void 

shiftCopy(float *odata, 

float *idata, 

int shift)

{  

int xid = blockIdx.x * blockDim.x

+ threadIdx.x;  

odata[xid] = idata[xid+shift];

}
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texture <float> texRef;

__global__ void 

textureShiftCopy(float *odata, 

float *idata, 

int shift)

{

int xid = blockIdx.x * blockDim.x 

+ threadIdx.x;  

odata[xid] = tex1Dfetch(texRef, xid+shift);

}
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Summary



Occupancy

Thread instructions are executed sequentially, so 
executing other warps is the only way to hide 
latencies and keep the hardware busy

Occupancy = Number of warps running concurrently 
on a multiprocessor divided by maximum number of 
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on a multiprocessor divided by maximum number of 
warps that can run concurrently

Limited by resource usage:

Registers

Shared memory



Blocks per Grid Heuristics

# of blocks > # of multiprocessors

So all multiprocessors have at least one block to execute

# of blocks / # of multiprocessors > 2

Multiple blocks can run concurrently in a multiprocessor

Blocks that aren’t waiting at a __syncthreads() keep the 
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Blocks that aren’t waiting at a __syncthreads() keep the 

hardware busy

Subject to resource availability – registers, shared memory

# of blocks > 100 to scale to future devices

Blocks executed in pipeline fashion

1000 blocks per grid will scale across multiple generations



Register Dependency

Read-after-write register dependency
Instruction’s result can be read ~24 cycles later

Scenarios: CUDA: PTX:

add.f32   $f3, $f1, $f2

add.f32   $f5, $f3, $f4

x = y + 5;

z = x + 3;
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To completely hide the latency: 
Run at least 192 threads (6 warps) per multiprocessor

At least 25% occupancy (1.0/1.1), 18.75% (1.2/1.3)

Threads do not have to belong to the same thread block

ld.shared.f32  $f3, [$r31+0] 

add.f32           $f3, $f3, $f4

s_data[0] += 3;



Register Pressure

Hide latency by using more threads per 
multiprocessor

Limiting Factors:

Number of registers per kernel

8K/16K per multiprocessor, partitioned among concurrent 
threads

Amount of shared memory
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Amount of shared memory

16KB per multiprocessor, partitioned among concurrent 
threadblocks

Compile with –ptxas-options=-v flag

Use –maxrregcount=N flag to NVCC

N = desired maximum registers / kernel

At some point “spilling” into local memory may occur

Reduces performance – local memory is slow



Occupancy Calculator
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Optimizing threads per block

Choose threads per block as a multiple of warp size

Avoid wasting computation on under-populated warps

Facilitates coalescing

Want to run as many warps as possible per 
multiprocessor (hide latency)

Multiprocessor can run up to 8 blocks at a time
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Heuristics

Minimum: 64 threads per block

Only if multiple concurrent blocks 

192 or 256 threads a better choice

Usually still enough regs to compile and invoke successfully

This all depends on your computation, so experiment!



Occupancy != Performance

Increasing occupancy does not necessarily increase 
performance

BUT …
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BUT …

Low-occupancy multiprocessors cannot adequately 
hide latency on memory-bound kernels

(It all comes down to arithmetic intensity and available 
parallelism)



Parameterize Your Application

Parameterization helps adaptation to different GPUs

GPUs vary in many ways
# of multiprocessors

Memory bandwidth
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Shared memory size

Register file size

Max. threads per block

You can even make apps self-tuning (like FFTW and 
ATLAS)

“Experiment” mode discovers and saves optimal 
configuration
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CUDA Instruction Performance

Instruction cycles (per warp) = sum of

Operand read cycles

Instruction execution cycles

Result update cycles
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Therefore instruction throughput depends on

Nominal instruction throughput

Memory latency

Memory bandwidth

“Cycle” refers to the multiprocessor clock rate

1.3 GHz on the Tesla C1060, for example



Maximizing Instruction Throughput

Maximize use of high-bandwidth memory

Maximize use of shared memory

Minimize accesses to global memory

Maximize coalescing of global memory accesses
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Optimize performance by overlapping memory 
accesses with HW computation

High arithmetic intensity programs

i.e. high ratio of math to memory transactions

Many concurrent threads



Arithmetic Instruction Throughput

int and float add, shift, min, max and float mul, mad: 
4 cycles per warp

int multiply (*) is by default 32-bit

requires multiple cycles / warp

Use __mul24()/__umul24() intrinsics for 4-cycle 24-bit 

int multiply
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Integer divide and modulo are more expensive

Compiler will convert literal power-of-2 divides to shifts

But we have seen it miss some cases

Be explicit in cases where compiler can’t tell that divisor is 
a power of 2!

Useful trick: foo%n==foo&(n-1) if n is a power of 2



Runtime Math Library

There are two types of runtime math operations in 
single precision

__funcf(): direct mapping to hardware ISA

Fast but lower accuracy (see prog. guide for details)

Examples: __sinf(x), __expf(x), __powf(x,y)

: compile to multiple instructions
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funcf() : compile to multiple instructions

Slower but higher accuracy (5 ulp or less)

Examples: sinf(x), expf(x), powf(x,y)

The -use_fast_math compiler option forces every 
funcf() to compile to __funcf()



GPU results may not match CPU

Many variables: hardware, compiler, optimization 
settings

CPU operations aren’t strictly limited to 0.5 ulp

Sequences of operations can be more accurate due to 80-
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Sequences of operations can be more accurate due to 80-
bit extended precision ALUs

Floating-point arithmetic is not associative!



FP Math is Not Associative!

In symbolic math, (x+y)+z == x+(y+z)

This is not necessarily true for floating-point addition

Try x = 1030, y = -1030 and z = 1 in the above equation

When you parallelize computations, you potentially 
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When you parallelize computations, you potentially 
change the order of operations

Parallel results may not exactly match sequential 
results

This is not specific to GPU or CUDA – inherent part of 
parallel execution



Control Flow Instructions

Main performance concern with branching is 
divergence

Threads within a single warp take different paths

Different execution paths must be serialized

Avoid divergence when branch condition is a 
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function of thread ID

Example with divergence: 

if (threadIdx.x > 2) { }

Branch granularity < warp size

Example without divergence:

if (threadIdx.x / WARP_SIZE > 2) { }

Branch granularity is a whole multiple of warp size



Summary

GPU hardware can achieve great performance on 
data-parallel computations if you follow a few simple 
guidelines:

Use parallelism efficiently

Coalesce memory accesses if possible

Take advantage of shared memory
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Take advantage of shared memory

Explore other memory spaces

Texture

Constant

Reduce bank conflicts



Special CUDA Developer Offer on 
Tesla GPUs

50% off MSRP on Tesla C1060 GPUs

Up to four per developer
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Act now, limited time offer

Visit http://www.nvidia.com/object/webinar_promo

If you are outside of US or Canada, please contact an 
NVIDIA Tesla Preferred Provider in your country


