Optimizing CUDA

| —
NVIDIA.

Outline

® overview

® Hardware

® Memory Optimizations

® Execution Configuration Optimizations

® Instruction Optimizations
® Summary

© NVIDIA Corporation 2009

Optimize Algorithms for the GPU <X

NVIDIA.

® Maximize independent parallelism
® Maximize arithmetic intensity (math/bandwidth)

® Sometimes it’s better to recompute than to cache
® GpPU spends its transistors on ALUs, not memory

® Do more computation on the GPU to avoid costly
data transfers

® Even low parallelism computations can sometimes be faster
than transferring back and forth to host

© NVIDIA Corporation 2009

Optimize Memory Access <X
NVIDIA.

® Coalesced vs. Non-coalesced = order of magnitude
® Gilobal/Local device memory

® Optimize for spatial locality in cached texture
memory

® In shared memory, avoid high-degree bank conflicts

© NVIDIA Corporation 2009

Take Advantage of Shared Memory <X

NVIDIA.

® Hundreds of times faster than global memory

® Threads can cooperate via shared memory

® Use one / a few threads to load / compute data
shared by all threads

® Use it to avoid non-coalesced access

® Stage loads and stores in shared memory to re-order non-
coalesceable addressing

© NVIDIA Corporation 2009

Use Parallelism Efficiently rf%A

® partition your computation to keep the GPU
multiprocessors equally busy
® Many threads, many thread blocks

¢ Keep resource usage low enough to support multiple

active thread blocks per multiprocessor
® Registers, shared memory

© NVIDIA Corporation 2009

 —
NVIDIA.

Outline

® overview

® Hardware

® Memory Optimizations

® Execution Configuration Optimizations

® Instruction Optimizations
® Summary

© NVIDIA Corporation 2009

10-Series Architecture @

NVIDIA.

® 240 Scalar Processor (SP) cores execute kernel threads
® 30 Streaming Multiprocessors (SMs) each contain

® 8 scalar processors

® 2 Special Function Units (SFUs)

¢ 1 double precision unit

® Shared memory enables thread cooperation

Multiprocessor

Scalar
Processors

Shared

© NVIDIA Corporation 2009

Execution Model
Software Hardware

Scalar

Processor
Thread

Q&

Thread
Block Multiprocessor

Grid Device

© NVIDIA Corporation 2009

NVIDIA.
Threads are executed by scalar processors

Thread blocks are executed on multiprocessors
Thread blocks do not migrate

Several concurrent thread blocks can reside on
one multiprocessor - limited by multiprocessor
resources (shared memory and register file)

A kernel is launched as a grid of thread blocks

Only one kernel can execute on a device at one
time

Warps and Half Warps

— 32 Threads
32 Threads
ool 32 Throads

Block Warps Multiprocessor

R =

KKl &

Half Warps

© NVIDIA Corporation 2009

NVIDIA.

A thread block consists of 32-
thread warps

A warp is executed physically in
parallel (SIMD) on a
multiprocessor

A half-warp of 16 threads can
coordinate global memory
accesses into a single transaction

Memory Architecture

NVIDIA.

GPU

Multiprocessor
Multiprocessor
Multiprocessor

Registers

Chipset

Shared Memory

Constant and Texture
Caches

© NVIDIA Corporation 2009

Memory Architecture .
NVIDIA.

Memory |Location |Cached |Access | Scope Lifetime
Register [On-chip | N/A R/W One thread Thread
Local Off-chip | No R/W One thread Thread
Shared On-chip | N/A R/W All threads in a block | Block
Global Off-chip | No R/W All threads + host Application

Constant | Off-chip | Yes R All threads + host Application

Texture Off-chip | Yes R All threads + host Application

© NVIDIA Corporation 2009

NVIDIA.

Outline

® Overview
® Hardware

® Memory Optimizations
® Data transfers between host and device

® Device memory optimizations
® Execution Configuration Optimizations
® Instruction Optimizations
® Summary

© NVIDIA Corporation 2009

Host-Device Data Transfers <
NVIDIA.

® Device to host memory bandwidth much lower than
device to device bandwidth
® 3 GB/s peak (PCl-e x16 Gen 2) vs. 141 GB/s peak (GTX 280)

® Minimize transfers

® |ntermediate data can be allocated, operated on, and
deallocated without ever copying them to host memory

® Group transfers
® 0one large transfer much better than many small ones

© NVIDIA Corporation 2009

Page-Locked Data Transfers <X

NVIDIA.

® cudaMallocHost () allows allocation of page-
locked (“pinned”) host memory

® Enables highest cudaMemcpy performance
® 3.2 GB/s on PCl-e x16 Gen1
® 5.2 GB/s on PCl-e x16 Gen2

® See the “bandwidthTest” CUDA SDK sample

® Use with caution!!

® Allocating too much page-locked memory can reduce
overall system performance

® Test your systems and apps to learn their limits

© NVIDIA Corporation 2009

Overlapping Data Transfers and Ff%‘\
Computation NVIDIA.

® Async and Stream APIs allow overlap of H2D or D2H
data transfers with computation

® cru computation can overlap data transfers on all CUDA
capable devices

® Kernel computation can overlap data transfers on devices
with “Concurrent copy and execution” (roughly compute
capability >=1.1)

® Stream = sequence of operations that execute in
order on GPU
® Operations from different streams can be interleaved

® Stream ID used as argument to async calls and kernel
launches

© NVIDIA Corporation 2009

Asynchronous Data Transfers <3
NVIDIA.,

® Asynchronous host-device memory copy returns
control immediately to CPU

® cudaMemcpyAsync (dst, src, size, dir, stream);

® requires pinned host memory (allocated with

“cudaMallocHost”)

® Overlap CPU computation with data transfer
® 0 = default stream

cudaMemcpyAsync(a_d, a_h, size, A

cudaMemcpyHostToDevice, 0); >-oveﬂapped

cpuFunction() ;
cudaThreadSynchronize () ;

kernel<<<grid, block>>>(a_d);

© NVIDIA Corporation 2009

GPU/CPU Synchronization <X

NVIDIA.

® Context based

® cudaThreadSynchronize ()

® Blocks until all previously issued CUDA calls from a
CPU thread complete

® Stream based

® cudaStreamSynchronize (stream)

® Blocks until all CUDA calls issued to given stream
complete

® cudaStreamQuery (stream)
® Indicates whether stream is idle
® Returns cudaSuccess, cudaErrorNotReady, ...
® Does not block CPU thread

© NVIDIA Corporation 2009

GPU/CPU Synchronization <X

NVIDIA.

® Stream based using events

® Events can be inserted into streams:
cudaEventRecord (event, stream)

® Event is recorded when GPU reaches it in a stream
® Recorded = assigned a timestamp (GPU clocktick)
® Useful for timing

® cudaEventSynchronize (event)
® Blocks until given event is recorded

® cudaEventQuery (event)

® Indicates whether event has recorded
® Returns cudaSuccess, cudaErrorNotReady, ...

® Does not block CPU thread

© NVIDIA Corporation 2009

Overlapping kernel and data transfer ;ﬁ%ﬁ

® Requires:
® «Concurrent copy and execute”
® deviceoverlap field of a cudaDeviceProp variable
® Kernel and transfer use different, non-zero streams

® A CUDA call to stream-0 blocks until all previous calls
complete and cannot be overlapped

® Example:

cudaStreamCreate (&streaml) ;

cudaStreamCreate (&stream2) ;

cudaMemcpyAsync (dst, src, size, dir, streaml);
_ overlapped
kernel<<<grid, block, 0, stream2>>>(..);

cudaStreamSynchronize (stream2) ;

© NVIDIA Corporation 2009

Zero copy <

NVIDIA.

® Access host memory directly from device code

® Transfers implicitly performed as needed by device code
® Introduced in CUDA 2.2
® Check canMapHostMemory field of cudaDeviceProp variable

® Al set-up is done on host using mapped memory

cudaSetDeviceFlags (cudaDeviceMapHost) ;

cudaHostAlloc ((void **)&a_h, nBytes,
cudaHostAllocMapped) ;

cudaHostGetDevicePointer ((void **)&a d, (void *)a_h, 0);
for (i=0; i<N; i++) a_h[i] = 1i;

increment<<<grid, block>>>(a_d, N);

© NVIDIA Corporation 2009

Zero copy considerations <X
NVIDIA.

® Zero copy will always be a win for integrated devices

that utilize CPU memory (you can check this using the
integrated field In cudaDeviceProp)

® Zero copy will be faster if data is only read/written
from/to global memory once, for example:
® Copy input data to GPU memory
® Run one kernel
® Copy output data back to CPU memory

® Potentially easier and faster alternative to using
cudaMemcpyAsync

® ror example, can both read and write CPU memory from
within one kernel

® Note that current devices use pointers that are 32-bit
so there is a limit of 4GB per context

© NVIDIA Corporation 2009

Outline
NVIDIA.

® overview

® Hardware

® Memory Optimizations
® Data transfers between host and device
® Device memory optimizations

¢ Measuring performance — effective bandwidth
® Coalescing

® Shared Memory

® Textures

® Execution Configuration Optimizations
® Instruction Optimizations
® Summary

© NVIDIA Corporation 2009

Theoretical Bandwidth

® Device Bandwidth of GTX 280

DDR
v

® 1107*10°* (512/8)*2/1024° = 131.9 GB/s
1§ J

—)

Memory Memory
clock (Hz) interface
(bytes)

® Specs report 141 GB/s
® Use 10° B/GB conversion rather than 10243
® Whichever you use, be consistent

© NVIDIA Corporation 2009

NVIDIA.

Effective Bandwidth <X

NVIDIA.

® Effective Bandwidth (for copying array of N floats)

® N*4B/element/10243* 2/ (time in secs) = GB/s
G J A
Y

Array size Read and
(bytes) write

B/GB
(or 109)

© NVIDIA Corporation 2009

NVIDIA.

Outline

® overview

® Hardware

® Memory Optimizations
® Data transfers between host and device
® Device memory optimizations

¢ Measuring performance — effective bandwidth
® Coalescing

® Shared Memory

® Textures

® Execution Configuration Optimizations
® Instruction Optimizations
® Summary

© NVIDIA Corporation 2009

Coalescing <X

NVIDIA.
&

Global memory access of 32, 64, or 128-bit words by a half-
warp of threads can result in as few as one (or two)
transaction(s) if certain access requirements are met

Depends on compute capability
® 1.0 and 1.1 have stricter access requirements

Float (32-bit) data example:
32-byte segments
64-byte segments
128-byte segments

Global Memory

Half-warp of threads

© NVIDIA Corporation 2009

NVIDIA.

Coalescing
Compute capability 1.0 and 1.1

® K-th thread must access k-th word in the segment (or k-th word in 2
contiguous 128B segments for 128-bit words), not all threads need to
participate

Coalesces — 1 transaction

[TTT TTTTTTTTTTTT]

Out of sequence — 16 transactions

T T T T T T T

Misaligned — 16 transactions

A

© NVIDIA Corporation 2009

Coalescing <X
Compute capability 1.2 and higher

Issues transactions for segments of 32B, 64B, and 128B
® Smaller transactions used to avoid wasted bandwidth

NVIDIA.
®

1 transaction - 64B segment

TTTTAETTT

2 transactions - 64B and 32B segments

A

1 transaction - 128B segment

© NVIDIA Corporation 2010_]_|_|_|_]_rrr]—rrr]—rrl

Coalescing Examples
NVIDIA.

® Effective bandwidth of small kernels that copy data
® Effects of offset and stride on performance

® Two GPUs
® G1TX 280

® Compute capability 1.3

® peak bandwidth of 141 GB/s
® FX 5600

® Compute capability 1.0

® peak bandwidth of 77 GB/s

© NVIDIA Corporation 2009

Coalescing Examples
NVIDIA.

__global___ void offsetCopy(float *odata, float *idata,
int offset)
{
int xid = blockIdx.x * blockDim.x + threadlIdx.x + offset;
odata[xid] = idata[xid];

Copy with Offset

._—E_I:I-I-.
i
o
5
=
=
=
=
m
m
@
2
£
L]

© NVIDIA Corporation 2009

Coalescing Examples
NVIDIA.

__global___ void strideCopy (float *odata, float *idata,
int stride)

int xid = (blockIdx.x*blockDim.x + threadlIdx.x)*stride;
odata[xid] = idata[xid];

Copy with Stride

¥ GTX280
-4 FX5600

.:E_r-l-l-
m
(0
=
8=
=
=
| -
@
m
|__1:|h
2
£
T

Stride

© NVIDIA Corporation 2009

Coalescing Examples rf%A

® strided memory access is Copy with Stride
inherent in many
multidimensional problems

® stride is generally large
(>> 18)

BO
&0 . -+ GTX280

' - FX5600
40

= ' l..“*r!

; -Ii-lfli
1

However mmn 0 2 4 6 B 10 12 14 16 18

Stride

.:é'?-
m
o
=
D
=
o
| =
m
m
@
2
g
L

® Strided access to global
memory can be avoided
using shared memory

© NVIDIA Corporation 2009

NVIDIA.

Outline

® overview

® Hardware

® Memory Optimizations
® Data transfers between host and device
® Device memory optimizations

¢ Measuring performance — effective bandwidth
® Coalescing

® Shared Memory

® Textures

® Execution Configuration Optimizations
® Instruction Optimizations
® Summary

© NVIDIA Corporation 2009

Shared Memory <X

NVIDIA.

® _Hundred times faster than global memory

® Cache data to reduce global memory accesses

® Threads can cooperate via shared memory

® Use it to avoid non-coalesced access

® Stage loads and stores in shared memory to re-order non-
coalesceable addressing

© NVIDIA Corporation 2009

Shared Memory Architecture

NVIDIA.

® Many threads accessing memory
® Therefore, memory is divided into banks
® Successive 32-bit words assighed to successive banks

® Each bank can service one address per cycle

®A memory can service as many simultaneous
accesses as it has banks

® Multiple simultaneous accesses to a bank
result in a bank conflict
® Conflicting accesses are serialized

© NVIDIA Corporation 2009

Bank Addressing Examples

S

n

VIDIA.

® No Bank Conflicts

® Linear addressing
stride == 1

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Bank 15

® No Bank Conflicts

® Random 1:1 Permutation

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

Bank 15

© NVIDIA Corporation 2009

Bank Addressing Examples

NVIDIA.

® 2-way Bank Conflicts ® 8-way Bank Conflicts

® Linear addressing ® Linear addressing stride ==
stride == 2

X8

Thread 0 Thread O
Thread 1 Thread 1
Thread 2 Thread 2 |

Thread 3 Thread 3 ’

Thread 4 Thread 4 '

Thread 5 ,\
Thread 6 »
Thread 7

Thread 8 8
Thread 9

Thread 10
Thread 11 Bank 15 Thread 15 Bank 15

© NVIDIA Corporation 2009

Shared memory bank conflicts <3
NVIDIA.,

® Shared memoty is ~ as fast as registers if there are no bank
conflicts

® warp_serialize profiler signal reflects conflicts

® The fast case:

® i all threads of a half-warp access different banks, there is no
bank conflict

® it all threads of a half-warp read the identical address, there is no
bank conflict (broadcast)

® The slow case:

® Bank Conflict: multiple threads in the same half-warp access the
same bank

® Must serialize the accesses
® Cost = max # of simultaneous accesses to a single bank

© NVIDIA Corporation 2009

Shared Memory Example: Transpose N

® Each thread block works on a tile of the matrix

® Naive implementation exhibits strided access to
global memory

idata

Elements transposed by a half-warp of threads

© NVIDIA Corporation 2009

Naive Transpose <X
NVIDIA.

® Loads are coalesced, stores are not (strided by
height)

__global__ void transposeNaive (float *odata, float *idata,
int width, int height)
{
int xIndex = blockIdx.x * TILE DIM + threadIdx.x;

int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index_in = xIndex + width * yIndex;
int index out = yIndex + height * xIndex;

odata[index out] = idata[index in];

idata
[

© NVIDIA Corporation 2009

Coalescing through shared memory ‘=<

® Access columns of a tile in shared memory to write
contiguous data to global memory

® Requires _ syncthreads () since threads access
data in shared memory stored by other threads

idata odata

tile
'
1

Elements transposed by a half-warp of threads

© NVIDIA Corporation 2009

NVIDIA.

Coalescing through shared memory

__global__ void transposeCoalesced(float *odata, float *idata,
int width, int height)
{
__shared float tile[TILE DIM] [TILE DIM];

int xIndex = blockIdx.x * TILE DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index in = xIndex + (yIndex) *width;

xIndex = blockIdx.y * TILE_DIM + threadIdx.x;
yIndex = blockIdx.x * TILE_DIM + threadIdx.y;

int index_out = xIndex + (yIndex)*height;
tile[threadIdx.y] [threadIdx.x] = idata[index_in];

__syncthreads() ;

odata[index out] = tile[threadIdx.x] [threadIdx.y];

© NVIDIA Corporation 2009

Bank Conflicts in Transpose <3
NVIDIA,

® 16x16 shared memory tile of floats
e Data in columns are in the same bank
® 16-way bank conflict reading columns in tile

® Solution - pad shared memory array
® chared float tile[TILE DIM] [TILE DIM+1];
® Dpatain anti-diagonals are in same bank
idata odata

tile
'
1

Elements transposed by a half-warp of threads

© NVIDIA Corporation 2009

NVIDIA.

Outline

® overview

® Hardware

® Memory Optimizations
® Data transfers between host and device
® Device memory optimizations

¢ Measuring performance — effective bandwidth
® Coalescing

® Shared Memory

® Textures

® Execution Configuration Optimizations
® Instruction Optimizations
® Summary

© NVIDIA Corporation 2009

Textures in CUDA

® Texture is an object for reading data

® Benefits:

® Datais cached (optimized for 2D locality)
® Helpful when coalescing is a problem

® Filtering
® Linear / bilinear / trilinear interpolation
® Dedicated hardware

® Wrap modes (for “out-of-bounds” addresses)
® Clamp to edge / repeat

® Addressable in 1D, 2D, or 3D
® Using integer or normalized coordinates

© NVIDIA Corporation 2009

NVIDIA.

Texture Addressing ﬁ%ﬁ

01 2 3 4
(2.5, 0.5)

Wrap Clamp

® Out-of-bounds coordinate is ® Out-of-bounds coordinate is
wrapped (modulo arithmetic) replaced with the closest
boundary

0 1 2 3 4 0O 1 2 3 4

0] 0]

1 (5.5, 1.5) 1 (5.5, 1.5)
L L

L1 L1

2
3

2
3

© NVIDIA Corporation 2009

CUDA Texture Types <X

NVIDIA.

® Bound to linear memory
® Gilobal memory address is bound to a texture
® Only 1D
® Integer addressing
® No filtering, no addressing modes
® Bound to CUDA arrays
® Block linear CUDA array is bound to a texture

® 1D, 2D, 0r 3D
® Float addressing (size-based or normalized)
® Filtering
® Addressing modes (clamping, repeat)

® Bound to pitch linear (CUDA 2.2)
: Global memory address is bound to a texture
v 2D

® Float/integer addressing, filtering, and clamp/repeat
addressing modes similar to CUDA arrays

© NVIDIA Corporation 2009

CUDA Texturing Steps <X

NVIDIA.

® Host (CPU) code:

® Allocate/obtain memory (global linear/pitch linear, or CUDA
array)

® Create a texture reference object

® Currently must be at file-scope
® Bind the texture reference to memory/array
® When done:

® Unbind the texture reference, free resources

® pevice (kernel) code:
® Fetch using texture reference
® Linear memory textures: tex1Dfetch()
® Array textures: tex1D() or tex2D() or tex3D()
® pitch linear textures: tex2D()

© NVIDIA Corporation 2009

Texture Example :
NVIDIA,

__global__ void Cﬂpy with Shift
shiftCopy (float *odata, :
float *idata, Using Global Memory and Textures

int shift) 140
120 284444t s0sssessl BWGETX280

100] Global

h _.___.l_' - _._._._.' - ETX 280
Texture

-V Fx 5600
S0 il -
O ’I.: Global
- F X 5600
Texture

int xid = blockIdx.x * blockDim.x
+ threadlIdx.x;

odata[xid] = idata[xid+shift]; 8O

texture <float> texRef;

.-—u:a-.
m
o
=
=
2
=
| -
m
m
g
3
=
Ll

__global___ void

textureShiftCopy (float *odata,
float *idata, Shift
int shift)

int xid = blockIdx.x * blockDim.x

+ threadlIdx.x;
odata[xid] = texlDfetch (texRef, xid+shift);

© NVIDIA Corporation 2009

NVIDIA.

Outline

® overview

® Hardware

® Memory Optimizations

® Execution Configuration Optimizations
® Instruction Optimizations

® Summary

© NVIDIA Corporation 2009

Occupancy <3

NVIDIA.

® Thread instructions are executed sequentially, so
executing other warps is the only way to hide
latencies and keep the hardware busy

® Occupancy = Number of warps running concurrently
on a multiprocessor divided by maximum number of
warps that can run concurrently

® Limited by resource usage:
o Registers
® shared memory

© NVIDIA Corporation 2009

Blocks per Grid Heuristics <3

NVIDIA.

® 4 of blocks > # of multiprocessors
® soall multiprocessors have at least one block to execute

® 4 of blocks / # of multiprocessors > 2

® Multiple blocks can run concurrently in a multiprocessor

® Blocks that aren’t waitingata__ syncthreads () keep the
hardware busy

® Subject to resource availability — registers, shared memory

® 4 of blocks > 100 to scale to future devices
® Blocks executed in pipeline fashion
® 1000 blocks per grid will scale across multiple generations

© NVIDIA Corporation 2009

Register Dependency <A

NVIDIA.

® Read-after-write register dependency
® Instruction’s result can be read ~24 cycles later
® Scenarios: CUDA: PTX:

y + 5; add.f32 $f3, $f1, $f2
x + 3; add.f32 $f5, $f3, $f4

s_data[0] += 3; Id.shared.f32 $f3, [$r31+0]
add.f32 $f3, $f3, $f4

® 1 completely hide the latency:

® Run at least 192 threads (6 warps) per multiprocessor
® Atleast 25% occupancy (1.0/1.1), 18.75% (1.2/1.3)
® Threads do not have to belong to the same thread block

© NVIDIA Corporation 2009

Register Pressure <X
NVIDIA.

® Hide latency by using more threads per
multiprocessor

® Limiting Factors:

® Number of registers per kernel

® 8K/16K per multiprocessor, partitioned among concurrent
threads

® Amount of shared memory

® 16KB per multiprocessor, partitioned among concurrent
threadblocks

® Compile with —-ptxas-options=-v flag
® Use -maxrregcount=N flag to NVCC

® N = desired maximum registers / kernel

® Atsome point “spilling” into local memory may occur
® Reduces performance — local memory is slow

© NVIDIA Corporation 2009

Occupancy Calculator

Microsoft Excel - CUDA_Occupancy_calculator.xls

.g_] File Edit Wew Insert Format Tools Data Window Help

NG E OSBRI TEI S DB S0 8 s er - @
MyRegCount | = A 20
& | B [e 1] D [e T F [T e [w T 1

CU DA G PU OCCU pancy Ca|CU |at0I' lick Here for detailed instructions on how to use this occupan

For more information on HVIDIA CUDA, visit http://developer.nvidia.com/cuda

Just follow steps 1, 2, and 3 below! {or click here for help) Your chosen resource usage is indicated by the red triangle on the graphs.

| The other data points represent the range of possible block sizes, register counts, and shared memory allocation.
1.) Select a GPU from the list (click): [Help)

2.) Enter your resource usage:
Threads Per Block
Registers Per Thread
_|Shared Memary Per Block (bytes)

Varying Block Size Varying Register Count

{Don't edit anything below this line)

=]
=

|5 |3.) GPU Occupancy Data is displayed here and in the graphs:

i |Active Threads per Multiprocessor 384
Active Warps per Multiprocessor 12
i |Active Thread Blocks per Multiprocessor 2
9 |Occupancy of each Multiprocessor 50%
Maximum Simultaneous Blocks per GPU 32
{Hote: This assumes there are at least this many blocks)

. 4 Ny Block Size
192

My Register
ount 20

Multiprocessor
Warp Occupancy
=3

Multiprocessor
Warp Occupancy
=t

Physical Limits for GPU: Gao
Multiprocessors per GPU 16 T T

Threads IWarp 32 144 208 272 336 400 12 1§

Warps § Multiprocessar 24 Threads Per Block Registers Per Thread
Threads ! Multiprocessor 7ES
Thread Blocks ! Multiprocessar g
Total # of 32-hbit registers ! Multiprocessor
0 |Shared Memory £ Muttiprocessar (bytes) Varying Shared Memory Usage

Allocation Per Thread Block
33 |WMarps

34 |Registers

5 |Shared Memory

5 |These data are used in computing the occupancy data in blue

@

Thread Blocks Per Multipro Blocks
3 [Limited by Max Warps f Multiprocessar 4
Limited by Registers ! Multiprocessar 2

_|Limited by Shared Memary / Multiprocessar 32
12 |Thread Block Limit Per Multiprocessor is the minimum of these 3

Multiprocessor
Warp Occupancy

CUDA Cccupancy Calculator |
“ersion: | i Registers Per Thread

Copyright and License
4 4 » M} Calculator {Help / GPU Data / Copyright & License [/

Ready

fistan,. C£BY > B

© NVIDIA Corporation 200

Optimizing threads per block [f%‘\
® Choose threads per block as a multiple of warp size

® Avoid wasting computation on under-populated warps

® Facilitates coalescing

® Wwant to run as many warps as possible per
multiprocessor (hide latency)

® Multiprocessor can run up to 8 blocks at a time

e Heuristics

® Minimum: 64 threads per block

® Only if multiple concurrent blocks
® 192 or 256 threads a better choice

® Usually still enough regs to compile and invoke successfully
® This all depends on your computation, so experiment!

© NVIDIA Corporation 2009

Occupancy != Performance <X
NVIDIA.

® Increasing occupancy does not necessarily increase
performance

® Low-occupancy multiprocessors cannot adequately
hide latency on memory-bound kernels

® (It all comes down to arithmetic intensity and available
parallelism)

© NVIDIA Corporation 2009

Parameterize Your Application <X
NVIDIA.

® parameterization helps adaptation to different GPUs

® GpPus vary in many ways
® 4of multiprocessors
® Memory bandwidth
® Shared memory size
® Register file size
® Max. threads per block

® You can even make apps self-tuning (like FFTW and
ATLAS)

® “Experiment” mode discovers and saves optimal
configuration

© NVIDIA Corporation 2009

Outline
NVIDIA.

® Overview

® Hardware

® Memory Optimizations

® Execution Configuration Optimizations
® |nstruction Optimizations

® Summary

© NVIDIA Corporation 2009

CUDA Instruction Performance Ff%‘\

® |nstruction cycles (per warp) = sum of
® Operand read cycles
® Instruction execution cycles
® Result update cycles

® Therefore instruction throughput depends on
® Nominal instruction throughput
® Memory latency
® Memory bandwidth

® <Cycle” refers to the multiprocessor clock rate
® 1.3 GHz on the Tesla C1060, for example

© NVIDIA Corporation 2009

Maximizing Instruction Throughput <3
NVIDIA.

® Maximize use of high-bandwidth memory
® Maximize use of shared memory
® Minimize accesses to global memory
® Maximize coalescing of global memory accesses

® Optimize performance by overlapping memory
accesses with HW computation
® High arithmetic intensity programs

®ie high ratio of math to memory transactions

® Many concurrent threads

© NVIDIA Corporation 2009

Arithmetic Instruction Throughput <X

NVIDIA.

® int and float add, shift, min, max and float mul, mad:

4 cycles per warp
® int multiply (*) is by default 32-bit
® requires multiple cycles / warp

® Use _ mul24()/__ _umul24 () Intrinsics for 4-cycle 24-bit
int multiply

® Integer divide and modulo are more expensive
® Compiler will convert literal power-of-2 divides to shifts
® But we have seen it miss some cases

® Be explicit in cases where compiler can’t tell that divisor is
a power of 2!

® Useful trick: foo%n==foos (n-1) if nis a power of 2

© NVIDIA Corporation 2009

Runtime Math Library <X

NVIDIA.

® There are two types of runtime math operations in
single precision
® funcf():direct mapping to hardware ISA
® Fast but lower accuracy (see prog. guide for details)
® Examples: sinf(x), _ expf(x), _ powf(x,y)
® funcf() :compile to multiple instructions

® Slower but higher accuracy (5 ulp or less)
® Examples: sinf (x), expf(x), powf (x,y)

® The —-use_fast_math compiler option forces every
funcf () tocompileto__ funcf ()

© NVIDIA Corporation 2009

GPU results may not match CPU <X

NVIDIA.

® Many variables: hardware, compiler, optimization
settings

® cpu operations aren’t strictly limited to 0.5 ulp

® Sequences of operations can be more accurate due to 80-
bit extended precision ALUs

® Floating-point arithmetic is not associative!

© NVIDIA Corporation 2009

FP Math is Not Associative! <A

NVIDIA.

® |h symbolic math, (x+y)+z == X+(y+2)

® This is not hecessarily true for floating-point addition
® Try x = 1030, y =-1030 and z = 1 in the above equation

® When you parallelize computations, you potentially

change the order of operations

® parallel results may not exactly match sequential
results

® Thisis not specific to GPU or CUDA - inherent part of
parallel execution

© NVIDIA Corporation 2009

Control Flow Instructions

® Main performance concern with branching is
divergence
® Threads within a single warp take different paths
® Different execution paths must be serialized

® Avoid divergence when branch condition is a

function of thread ID

® Example with divergence:
® if (threadIdx.x > 2) { }

® Branch granularity < warp size

® Example without divergence:
® if (threadIdx.x / WARP_SIZE > 2) { }

® Branch granularity is a whole multiple of warp size

© NVIDIA Corporation 2009

NVIDIA.

Summary <X

NVIDIA.

® GPU hardware can achieve great performance on
data-parallel computations if you follow a few simple
guidelines:
® Use parallelism efficiently
® Coalesce memory accesses Iif possible

® Take advantage of shared memory

® Explore other memory spaces
® Texture
® Constant

® Reduce bank conflicts

© NVIDIA Corporation 2009

NVIDIA.

Special CUDA Developer Offer on
Tesla GPUs

® 509% off MSRP on Tesla C1060 GPUs

® Up to four per developer

® Act now, limited time offer

® visit
® i you are outside of US or Canada, please contact an
NVIDIA Tesla Preferred Provider in your country

© NVIDIA Corporation 2009

