
Optimizing CUDA

Outline

Overview

Hardware

Memory Optimizations

Execution Configuration Optimizations

© NVIDIA Corporation 2009 2

Instruction Optimizations

Summary

Optimize Algorithms for the GPU

Maximize independent parallelism

Maximize arithmetic intensity (math/bandwidth)

Sometimes it’s better to recompute than to cache

© NVIDIA Corporation 2009 3

Sometimes it’s better to recompute than to cache

GPU spends its transistors on ALUs, not memory

Do more computation on the GPU to avoid costly
data transfers

Even low parallelism computations can sometimes be faster
than transferring back and forth to host

Optimize Memory Access

Coalesced vs. Non-coalesced = order of magnitude

Global/Local device memory

Optimize for spatial locality in cached texture
memory

© NVIDIA Corporation 2009 4

memory

In shared memory, avoid high-degree bank conflicts

Take Advantage of Shared Memory

Hundreds of times faster than global memory

Threads can cooperate via shared memory

Use one / a few threads to load / compute data

© NVIDIA Corporation 2009 5

Use one / a few threads to load / compute data
shared by all threads

Use it to avoid non-coalesced access
Stage loads and stores in shared memory to re-order non-
coalesceable addressing

Use Parallelism Efficiently

Partition your computation to keep the GPU
multiprocessors equally busy

Many threads, many thread blocks

Keep resource usage low enough to support multiple

© NVIDIA Corporation 2009 6

Keep resource usage low enough to support multiple
active thread blocks per multiprocessor

Registers, shared memory

Outline

Overview

Hardware

Memory Optimizations

Execution Configuration Optimizations

© NVIDIA Corporation 2009 7

Instruction Optimizations

Summary

10-Series Architecture

240 Scalar Processor (SP) cores execute kernel threads

30 Streaming Multiprocessors (SMs) each contain

8 scalar processors

2 Special Function Units (SFUs)

1 double precision unit

Shared memory enables thread cooperation

© NVIDIA Corporation 2009 8

Scalar
Processors

Multiprocessor

Shared
Memory

Double

Execution Model

Software Hardware

Threads are executed by scalar processors

Thread

Scalar
Processor

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

© NVIDIA Corporation 2009 9

Thread
Block Multiprocessor

Thread blocks do not migrate

Several concurrent thread blocks can reside on
one multiprocessor - limited by multiprocessor
resources (shared memory and register file)

...

Grid Device

A kernel is launched as a grid of thread blocks

Only one kernel can execute on a device at one
time

Warps and Half Warps

Thread
Block Multiprocessor

32 Threads

32 Threads

32 Threads

...

Warps

A thread block consists of 32-
thread warps

A warp is executed physically in
parallel (SIMD) on a
multiprocessor

=

© NVIDIA Corporation 2009 10

16

Half Warps

16

DRAM

Global

Local

Device
Memory

A half-warp of 16 threads can
coordinate global memory
accesses into a single transaction

Memory Architecture

Host

CPU

Chipset

Device

DRAM

Global

Local

GPU

Multiprocessor

Registers

Shared Memory

Multiprocessor

Registers

Shared Memory

Multiprocessor

Registers

Shared Memory

© NVIDIA Corporation 2009 11

DRAM

Global

Constant

Texture

Shared Memory

Constant and Texture
Caches

Memory Architecture

Memory Location Cached Access Scope Lifetime

Register On-chip N/A R/W One thread Thread

Local Off-chip No R/W One thread Thread

© NVIDIA Corporation 2009 12

Local Off-chip No R/W One thread Thread

Shared On-chip N/A R/W All threads in a block Block

Global Off-chip No R/W All threads + host Application

Constant Off-chip Yes R All threads + host Application

Texture Off-chip Yes R All threads + host Application

Outline

Overview

Hardware

Memory Optimizations

Data transfers between host and device

Device memory optimizations

© NVIDIA Corporation 2009 13

Device memory optimizations

Execution Configuration Optimizations

Instruction Optimizations

Summary

Host-Device Data Transfers

Device to host memory bandwidth much lower than
device to device bandwidth

8 GB/s peak (PCI-e x16 Gen 2) vs. 141 GB/s peak (GTX 280)

Minimize transfers

© NVIDIA Corporation 2009 14

Minimize transfers

Intermediate data can be allocated, operated on, and
deallocated without ever copying them to host memory

Group transfers

One large transfer much better than many small ones

Page-Locked Data Transfers

cudaMallocHost() allows allocation of page-
locked (“pinned”) host memory

Enables highest cudaMemcpy performance
3.2 GB/s on PCI-e x16 Gen1

© NVIDIA Corporation 2009 15

5.2 GB/s on PCI-e x16 Gen2

See the “bandwidthTest” CUDA SDK sample

Use with caution!!
Allocating too much page-locked memory can reduce
overall system performance

Test your systems and apps to learn their limits

Overlapping Data Transfers and
Computation

Async and Stream APIs allow overlap of H2D or D2H
data transfers with computation

CPU computation can overlap data transfers on all CUDA
capable devices

Kernel computation can overlap data transfers on devices
with “Concurrent copy and execution” (roughly compute

© NVIDIA Corporation 2009 16

with “Concurrent copy and execution” (roughly compute
capability >= 1.1)

Stream = sequence of operations that execute in
order on GPU

Operations from different streams can be interleaved

Stream ID used as argument to async calls and kernel
launches

Asynchronous host-device memory copy returns
control immediately to CPU

cudaMemcpyAsync(dst, src, size, dir, stream);

requires pinned host memory (allocated with
“cudaMallocHost”)

Asynchronous Data Transfers

© NVIDIA Corporation 2009

Overlap CPU computation with data transfer

0 = default stream

cudaMemcpyAsync(a_d, a_h, size,

cudaMemcpyHostToDevice, 0);

cpuFunction();

cudaThreadSynchronize();

kernel<<<grid, block>>>(a_d);

17

overlapped

GPU/CPU Synchronization

Context based

cudaThreadSynchronize()

Blocks until all previously issued CUDA calls from a
CPU thread complete

Stream based

© NVIDIA Corporation 2009 18

Stream based

cudaStreamSynchronize(stream)

Blocks until all CUDA calls issued to given stream
complete

cudaStreamQuery(stream)

Indicates whether stream is idle

Returns cudaSuccess, cudaErrorNotReady, ...

Does not block CPU thread

GPU/CPU Synchronization

Stream based using events

Events can be inserted into streams:

cudaEventRecord(event, stream)

Event is recorded when GPU reaches it in a stream

Recorded = assigned a timestamp (GPU clocktick)

Useful for timing

© NVIDIA Corporation 2009 19

cudaEventSynchronize(event)

Blocks until given event is recorded

cudaEventQuery(event)

Indicates whether event has recorded

Returns cudaSuccess, cudaErrorNotReady, ...

Does not block CPU thread

Overlapping kernel and data transfer

Requires:

“Concurrent copy and execute”

deviceOverlap field of a cudaDeviceProp variable

Kernel and transfer use different, non-zero streams

A CUDA call to stream-0 blocks until all previous calls
complete and cannot be overlapped

© NVIDIA Corporation 2009 20

complete and cannot be overlapped

Example:

cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst, src, size, dir, stream1);

kernel<<<grid, block, 0, stream2>>>(…);

cudaStreamSynchronize(stream2);

overlapped

Zero copy

Access host memory directly from device code

Transfers implicitly performed as needed by device code

Introduced in CUDA 2.2

Check canMapHostMemory field of cudaDeviceProp variable

All set-up is done on host using mapped memory

© NVIDIA Corporation 2009 21

cudaSetDeviceFlags(cudaDeviceMapHost);

...

cudaHostAlloc((void **)&a_h, nBytes,

cudaHostAllocMapped);

cudaHostGetDevicePointer((void **)&a_d, (void *)a_h, 0);

for (i=0; i<N; i++) a_h[i] = i;

increment<<<grid, block>>>(a_d, N);

Zero copy considerations

Zero copy will always be a win for integrated devices
that utilize CPU memory (you can check this using the
integrated field in cudaDeviceProp)

Zero copy will be faster if data is only read/written
from/to global memory once, for example:

Copy input data to GPU memory

Run one kernel

© NVIDIA Corporation 2009 22

Run one kernel

Copy output data back to CPU memory

Potentially easier and faster alternative to using
cudaMemcpyAsync

For example, can both read and write CPU memory from
within one kernel

Note that current devices use pointers that are 32-bit
so there is a limit of 4GB per context

Outline

Overview

Hardware

Memory Optimizations

Data transfers between host and device

Device memory optimizations

Measuring performance – effective bandwidth

© NVIDIA Corporation 2009 23

Measuring performance – effective bandwidth

Coalescing

Shared Memory

Textures

Execution Configuration Optimizations

Instruction Optimizations

Summary

Theoretical Bandwidth

Device Bandwidth of GTX 280

1107 * 106 * (512 / 8) * 2 / 10243 = 131.9 GB/s

DDR

© NVIDIA Corporation 2009 24

Specs report 141 GB/s

Use 109 B/GB conversion rather than 10243

Whichever you use, be consistent

Memory
clock (Hz)

Memory
interface
(bytes)

Effective Bandwidth

Effective Bandwidth (for copying array of N floats)

N * 4 B/element / 10243 * 2 / (time in secs) = GB/s

Array size Read and

© NVIDIA Corporation 2009 25

Array size
(bytes)

Read and
write

B/GB
(or 109)

Outline

Overview

Hardware

Memory Optimizations

Data transfers between host and device

Device memory optimizations

Measuring performance – effective bandwidth

© NVIDIA Corporation 2009 26

Measuring performance – effective bandwidth

Coalescing

Shared Memory

Textures

Execution Configuration Optimizations

Instruction Optimizations

Summary

Coalescing

Global memory access of 32, 64, or 128-bit words by a half-
warp of threads can result in as few as one (or two)
transaction(s) if certain access requirements are met

Depends on compute capability

1.0 and 1.1 have stricter access requirements

Float (32-bit) data example:
32-byte segments

© NVIDIA Corporation 2009 27

Global Memory

Half-warp of threads

64-byte segments

128-byte segments

……

Coalescing
Compute capability 1.0 and 1.1

K-th thread must access k-th word in the segment (or k-th word in 2
contiguous 128B segments for 128-bit words), not all threads need to
participate

Coalesces – 1 transaction

……

© NVIDIA Corporation 2009 28

Out of sequence – 16 transactions

Misaligned – 16 transactions

……

……

Coalescing
Compute capability 1.2 and higher

1 transaction - 64B segment

Issues transactions for segments of 32B, 64B, and 128B

Smaller transactions used to avoid wasted bandwidth

……

© NVIDIA Corporation 2009 29

2 transactions - 64B and 32B segments

1 transaction - 128B segment

……

……

Coalescing Examples

Effective bandwidth of small kernels that copy data

Effects of offset and stride on performance

Two GPUs

GTX 280

Compute capability 1.3

© NVIDIA Corporation 2009 30

Compute capability 1.3

Peak bandwidth of 141 GB/s

FX 5600

Compute capability 1.0

Peak bandwidth of 77 GB/s

Coalescing Examples

__global__ void offsetCopy(float *odata, float *idata,

int offset)

{

int xid = blockIdx.x * blockDim.x + threadIdx.x + offset;

odata[xid] = idata[xid];

}

© NVIDIA Corporation 2009 31

Coalescing Examples

__global__ void strideCopy(float *odata, float *idata,

int stride)

{

int xid = (blockIdx.x*blockDim.x + threadIdx.x)*stride;

odata[xid] = idata[xid];

}

© NVIDIA Corporation 2009 32

Coalescing Examples

Strided memory access is
inherent in many
multidimensional problems

Stride is generally large
(>> 18)

© NVIDIA Corporation 2009 33

However …

Strided access to global
memory can be avoided
using shared memory

Outline

Overview

Hardware

Memory Optimizations

Data transfers between host and device

Device memory optimizations

Measuring performance – effective bandwidth

© NVIDIA Corporation 2009 34

Measuring performance – effective bandwidth

Coalescing

Shared Memory

Textures

Execution Configuration Optimizations

Instruction Optimizations

Summary

Shared Memory

~Hundred times faster than global memory

Cache data to reduce global memory accesses

Threads can cooperate via shared memory

© NVIDIA Corporation 2009 35

Threads can cooperate via shared memory

Use it to avoid non-coalesced access
Stage loads and stores in shared memory to re-order non-
coalesceable addressing

Shared Memory Architecture

Many threads accessing memory

Therefore, memory is divided into banks

Successive 32-bit words assigned to successive banks

Each bank can service one address per cycle

A memory can service as many simultaneous
Bank 0

© NVIDIA Corporation 2009 36

A memory can service as many simultaneous
accesses as it has banks

Multiple simultaneous accesses to a bank
result in a bank conflict

Conflicting accesses are serialized

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Bank Addressing Examples

No Bank Conflicts

Linear addressing
stride == 1

No Bank Conflicts

Random 1:1 Permutation

Bank 2
Bank 1
Bank 0

Thread 2
Thread 1
Thread 0

Bank 2
Bank 1
Bank 0

Thread 2
Thread 1
Thread 0

© NVIDIA Corporation 2009 37

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2

Bank Addressing Examples

2-way Bank Conflicts

Linear addressing
stride == 2

8-way Bank Conflicts

Linear addressing stride == 8

Thread 2
Thread 1
Thread 0

Bank 2
Bank 1
Bank 0

Thread 2
Thread 1
Thread 0

Bank 2
Bank 1
Bank 0

x8

© NVIDIA Corporation 2009 38

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

x8

Shared memory bank conflicts

Shared memory is ~ as fast as registers if there are no bank
conflicts

warp_serialize profiler signal reflects conflicts

The fast case:

If all threads of a half-warp access different banks, there is no

© NVIDIA Corporation 2009 39

If all threads of a half-warp access different banks, there is no
bank conflict

If all threads of a half-warp read the identical address, there is no
bank conflict (broadcast)

The slow case:

Bank Conflict: multiple threads in the same half-warp access the
same bank

Must serialize the accesses

Cost = max # of simultaneous accesses to a single bank

Shared Memory Example: Transpose

Each thread block works on a tile of the matrix

Naïve implementation exhibits strided access to
global memory

idata odata

© NVIDIA Corporation 2009 40

idata odata

Elements transposed by a half-warp of threads

Naïve Transpose

Loads are coalesced, stores are not (strided by
height)

__global__ void transposeNaive(float *odata, float *idata,

int width, int height)

{

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

© NVIDIA Corporation 2009 41

idata odata

int index_in = xIndex + width * yIndex;

int index_out = yIndex + height * xIndex;

odata[index_out] = idata[index_in];

}

Coalescing through shared memory

Access columns of a tile in shared memory to write
contiguous data to global memory

Requires __syncthreads() since threads access

data in shared memory stored by other threads

idata odata

© NVIDIA Corporation 2009 42

Elements transposed by a half-warp of threads

idata odata
tile

__global__ void transposeCoalesced(float *odata, float *idata,

int width, int height)

{

__shared__ float tile[TILE_DIM][TILE_DIM];

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index_in = xIndex + (yIndex)*width;

Coalescing through shared memory

© NVIDIA Corporation 2009 43

xIndex = blockIdx.y * TILE_DIM + threadIdx.x;

yIndex = blockIdx.x * TILE_DIM + threadIdx.y;

int index_out = xIndex + (yIndex)*height;

tile[threadIdx.y][threadIdx.x] = idata[index_in];

__syncthreads();

odata[index_out] = tile[threadIdx.x][threadIdx.y];

}

Bank Conflicts in Transpose

16x16 shared memory tile of floats

Data in columns are in the same bank

16-way bank conflict reading columns in tile

Solution - pad shared memory array
__shared__ float tile[TILE_DIM][TILE_DIM+1];

Data in anti-diagonals are in same bank

© NVIDIA Corporation 2009 44

Data in anti-diagonals are in same bank

Elements transposed by a half-warp of threads

idata odata
tile

Outline

Overview

Hardware

Memory Optimizations

Data transfers between host and device

Device memory optimizations

Measuring performance – effective bandwidth

© NVIDIA Corporation 2009 45

Measuring performance – effective bandwidth

Coalescing

Shared Memory

Textures

Execution Configuration Optimizations

Instruction Optimizations

Summary

Textures in CUDA

Texture is an object for reading data

Benefits:
Data is cached (optimized for 2D locality)

Helpful when coalescing is a problem

Filtering

© NVIDIA Corporation 2009 46

Linear / bilinear / trilinear interpolation

Dedicated hardware

Wrap modes (for “out-of-bounds” addresses)
Clamp to edge / repeat

Addressable in 1D, 2D, or 3D
Using integer or normalized coordinates

Texture Addressing

Wrap Clamp

0 1 2 3 4

1

2

3

0
(2.5, 0.5)
(1.0, 1.0)

© NVIDIA Corporation 2009 47

Out-of-bounds coordinate is
wrapped (modulo arithmetic)

Out-of-bounds coordinate is
replaced with the closest
boundary

0 1 2 3 4

1

2

3

0
(5.5, 1.5)

0 1 2 3 4

1

2

3

0
(5.5, 1.5)

CUDA Texture Types

Bound to linear memory
Global memory address is bound to a texture

Only 1D

Integer addressing

No filtering, no addressing modes

Bound to CUDA arrays
Block linear CUDA array is bound to a texture

© NVIDIA Corporation 2009 48

Block linear CUDA array is bound to a texture

1D, 2D, or 3D

Float addressing (size-based or normalized)

Filtering

Addressing modes (clamping, repeat)

Bound to pitch linear (CUDA 2.2)
Global memory address is bound to a texture

2D

Float/integer addressing, filtering, and clamp/repeat
addressing modes similar to CUDA arrays

CUDA Texturing Steps

Host (CPU) code:

Allocate/obtain memory (global linear/pitch linear, or CUDA
array)

Create a texture reference object

Currently must be at file-scope

Bind the texture reference to memory/array

When done:

© NVIDIA Corporation 2009 49

When done:

Unbind the texture reference, free resources

Device (kernel) code:
Fetch using texture reference

Linear memory textures: tex1Dfetch()

Array textures: tex1D() or tex2D() or tex3D()

Pitch linear textures: tex2D()

Texture Example

__global__ void

shiftCopy(float *odata,

float *idata,

int shift)

{

int xid = blockIdx.x * blockDim.x

+ threadIdx.x;

odata[xid] = idata[xid+shift];

}

© NVIDIA Corporation 2009 50© NVIDIA Corporation 2009

texture <float> texRef;

__global__ void

textureShiftCopy(float *odata,

float *idata,

int shift)

{

int xid = blockIdx.x * blockDim.x

+ threadIdx.x;

odata[xid] = tex1Dfetch(texRef, xid+shift);

}

Outline

Overview

Hardware

Memory Optimizations

Execution Configuration Optimizations

Instruction Optimizations

Summary

© NVIDIA Corporation 2009 51

Summary

Occupancy

Thread instructions are executed sequentially, so
executing other warps is the only way to hide
latencies and keep the hardware busy

Occupancy = Number of warps running concurrently
on a multiprocessor divided by maximum number of

© NVIDIA Corporation 2009 52

on a multiprocessor divided by maximum number of
warps that can run concurrently

Limited by resource usage:

Registers

Shared memory

Blocks per Grid Heuristics

of blocks > # of multiprocessors

So all multiprocessors have at least one block to execute

of blocks / # of multiprocessors > 2

Multiple blocks can run concurrently in a multiprocessor

Blocks that aren’t waiting at a __syncthreads() keep the

© NVIDIA Corporation 2009 53

Blocks that aren’t waiting at a __syncthreads() keep the

hardware busy

Subject to resource availability – registers, shared memory

of blocks > 100 to scale to future devices

Blocks executed in pipeline fashion

1000 blocks per grid will scale across multiple generations

Register Dependency

Read-after-write register dependency
Instruction’s result can be read ~24 cycles later

Scenarios: CUDA: PTX:

add.f32 $f3, $f1, $f2

add.f32 $f5, $f3, $f4

x = y + 5;

z = x + 3;

© NVIDIA Corporation 2009 54

To completely hide the latency:
Run at least 192 threads (6 warps) per multiprocessor

At least 25% occupancy (1.0/1.1), 18.75% (1.2/1.3)

Threads do not have to belong to the same thread block

ld.shared.f32 $f3, [$r31+0]

add.f32 $f3, $f3, $f4

s_data[0] += 3;

Register Pressure

Hide latency by using more threads per
multiprocessor

Limiting Factors:

Number of registers per kernel

8K/16K per multiprocessor, partitioned among concurrent
threads

Amount of shared memory

© NVIDIA Corporation 2009 55

Amount of shared memory

16KB per multiprocessor, partitioned among concurrent
threadblocks

Compile with –ptxas-options=-v flag

Use –maxrregcount=N flag to NVCC

N = desired maximum registers / kernel

At some point “spilling” into local memory may occur

Reduces performance – local memory is slow

Occupancy Calculator

© NVIDIA Corporation 2009 56

Optimizing threads per block

Choose threads per block as a multiple of warp size

Avoid wasting computation on under-populated warps

Facilitates coalescing

Want to run as many warps as possible per
multiprocessor (hide latency)

Multiprocessor can run up to 8 blocks at a time

© NVIDIA Corporation 2009 57

Heuristics

Minimum: 64 threads per block

Only if multiple concurrent blocks

192 or 256 threads a better choice

Usually still enough regs to compile and invoke successfully

This all depends on your computation, so experiment!

Occupancy != Performance

Increasing occupancy does not necessarily increase
performance

BUT …

© NVIDIA Corporation 2009 58

BUT …

Low-occupancy multiprocessors cannot adequately
hide latency on memory-bound kernels

(It all comes down to arithmetic intensity and available
parallelism)

Parameterize Your Application

Parameterization helps adaptation to different GPUs

GPUs vary in many ways
of multiprocessors

Memory bandwidth

© NVIDIA Corporation 2009 59

Shared memory size

Register file size

Max. threads per block

You can even make apps self-tuning (like FFTW and
ATLAS)

“Experiment” mode discovers and saves optimal
configuration

Outline

Overview

Hardware

Memory Optimizations

Execution Configuration Optimizations

Instruction Optimizations

© NVIDIA Corporation 2009 60

Summary

CUDA Instruction Performance

Instruction cycles (per warp) = sum of

Operand read cycles

Instruction execution cycles

Result update cycles

© NVIDIA Corporation 2009 61

Therefore instruction throughput depends on

Nominal instruction throughput

Memory latency

Memory bandwidth

“Cycle” refers to the multiprocessor clock rate

1.3 GHz on the Tesla C1060, for example

Maximizing Instruction Throughput

Maximize use of high-bandwidth memory

Maximize use of shared memory

Minimize accesses to global memory

Maximize coalescing of global memory accesses

© NVIDIA Corporation 2009 62

Optimize performance by overlapping memory
accesses with HW computation

High arithmetic intensity programs

i.e. high ratio of math to memory transactions

Many concurrent threads

Arithmetic Instruction Throughput

int and float add, shift, min, max and float mul, mad:
4 cycles per warp

int multiply (*) is by default 32-bit

requires multiple cycles / warp

Use __mul24()/__umul24() intrinsics for 4-cycle 24-bit

int multiply

© NVIDIA Corporation 2009 63

Integer divide and modulo are more expensive

Compiler will convert literal power-of-2 divides to shifts

But we have seen it miss some cases

Be explicit in cases where compiler can’t tell that divisor is
a power of 2!

Useful trick: foo%n==foo&(n-1) if n is a power of 2

Runtime Math Library

There are two types of runtime math operations in
single precision

__funcf(): direct mapping to hardware ISA

Fast but lower accuracy (see prog. guide for details)

Examples: __sinf(x), __expf(x), __powf(x,y)

: compile to multiple instructions

© NVIDIA Corporation 2009 64

funcf() : compile to multiple instructions

Slower but higher accuracy (5 ulp or less)

Examples: sinf(x), expf(x), powf(x,y)

The -use_fast_math compiler option forces every
funcf() to compile to __funcf()

GPU results may not match CPU

Many variables: hardware, compiler, optimization
settings

CPU operations aren’t strictly limited to 0.5 ulp

Sequences of operations can be more accurate due to 80-

© NVIDIA Corporation 2009 65

Sequences of operations can be more accurate due to 80-
bit extended precision ALUs

Floating-point arithmetic is not associative!

FP Math is Not Associative!

In symbolic math, (x+y)+z == x+(y+z)

This is not necessarily true for floating-point addition

Try x = 1030, y = -1030 and z = 1 in the above equation

When you parallelize computations, you potentially

© NVIDIA Corporation 2009 66

When you parallelize computations, you potentially
change the order of operations

Parallel results may not exactly match sequential
results

This is not specific to GPU or CUDA – inherent part of
parallel execution

Control Flow Instructions

Main performance concern with branching is
divergence

Threads within a single warp take different paths

Different execution paths must be serialized

Avoid divergence when branch condition is a

© NVIDIA Corporation 2009 67

function of thread ID

Example with divergence:

if (threadIdx.x > 2) { }

Branch granularity < warp size

Example without divergence:

if (threadIdx.x / WARP_SIZE > 2) { }

Branch granularity is a whole multiple of warp size

Summary

GPU hardware can achieve great performance on
data-parallel computations if you follow a few simple
guidelines:

Use parallelism efficiently

Coalesce memory accesses if possible

Take advantage of shared memory

© NVIDIA Corporation 2009 68

Take advantage of shared memory

Explore other memory spaces

Texture

Constant

Reduce bank conflicts

Special CUDA Developer Offer on
Tesla GPUs

50% off MSRP on Tesla C1060 GPUs

Up to four per developer

© NVIDIA Corporation 2009 69

Act now, limited time offer

Visit http://www.nvidia.com/object/webinar_promo

If you are outside of US or Canada, please contact an
NVIDIA Tesla Preferred Provider in your country

