-‘-
A
. A
:__::
L

YA
YA
o

3
(A
N (A0
..e-....-.-
AN ",
.~....... (0
.........-—...
.\.........-.-.-
..............
-n-q-q--ﬂnﬂn)
s e
-\~—- YL (A

()
o
Vo
AR
AN
S

<A NVIDIA.

—
AP._....
/.........‘.
S i
Q.—.---
--.- 3

‘e e '
‘e
‘e
.
’
‘e
'

e
» \&\L-’.\L,\t’:\\
re

d

ducﬂon
ing an
tecture

An Intro
Comput

Sarah Tari
a
riq, NVIDIA Corporati
lon

Arch

2011

on

©N
VIDIA Corporat

GPU Computing <3

NVIDIA

» GPU: Graphics Processing Unit

= Traditionally used for real-time 1005 of ALUs
rendering =

= High computational density (100s
of ALUs) and memory bandwidth 1005 of ALUS

(100+ GB/s)

* Throughput processor: 1000s of
concurrent threads to hide latency
(vs. large fast caches)

© NVIDIA Corporation 2011

What is CUDA? <3

NVIDIA

CUDA Architecture

= Expose GPU computing for general purpose
= Retain performance

CUDA C/C++

= Based on industry-standard C/C++
= Small set of extensions to enable heterogeneous programming
= Straightforward APIs to manage devices, memory etc.

= This session introduces CUDA C/C++

© NVIDIA Corporation 2011

Introduction to CUDA C/C++

= What will you learn in this session?

© NVIDIA Corporation 2011

Start from “Hello World!”
Write and launch CUDA C/C++ kernels
Manage GPU memory

Manage communication and synchronization

<3

NVIDIA

Prerequisites <3

NVIDIA

= You (probably) need experience with C or C++
= You don’t need GPU experience
* You don’t need parallel programming experience

* You don’t need graphics experience

© NVIDIA Corporation 2011

<

NVIDIA.

CONCEPTS

<3

NVIDIA.

HELLO WORLD!

© NVIDIA Corporation 2011

Heterogeneous Computing >

NVIDIA

= Terminology:
= Host The CPU and its memory (host memory)
= Device The GPU and its memory (device memory)

Device

© NVIDIA Corporation 2011

Heterogeneous Computing

© NVIDIA Corporation 2011

#include <i

using nam

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS]
int gindex = threadidx.x + blockidx.x * blockDim.x;
int lindex = threadidx.x + RADIUS;

// Read input elements into shared memory
templlindex] = in[gindex];
if (threadidx.x < RADIUS) {
temp[lindex - RADIUS] = in[gindex - RADIUS];
templlindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

nchronize (ensure all the data is available)
ncthreads();

I Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

he result
outfgindex] = result;

void fill_ints(int *x, int n) {
n, 1);

}

int main(void) {
int *in, *out;
int *d_in, *d_out;
int size = (N + 2*RADIUS)

oc space for host copies and setup
(int *)malloc(size); fill_ints(in, N + 2*RADIUS);
int *)malloc(size); fill_ints(out, N + 2"RADIUS);

! space for device
cudaMalloc((void **)&d_in, siz
cudaMalloc((void **)&d_out, size);

cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

Launch st il_1d() kernel on GPU
|1 /BLOCK_SIZE,BLOCK_SIZt d_in + RADIUS, d_out + RADIUS);

/I Copy result back to host

cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

/I Cleanup
free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
return 0;

L parallel code

™
NVIDIA

- parallel fn

- serial code

i

- serial code

Simple Processing Flow >

NVIDIA

PCI Bus

CPU Memory

1. Copy input data from CPU memory to GPU

m e m 0 ry erconnect
L2

N C—

DRAM \

© NVIDIA Corporation 2011

Simple Processing Flow >

NVIDIA

CPU

PCI Bus

CPU Memory

1. Copy input data from CPU memory to GPU
memory

2. Load GPU program and execute,
caching data on chip for performance

© NVIDIA Corporation 2011

Simple Processing Flow >

NVIDIA

CPU
i

PCI Bus

CPU Memg

1. Copy input data from CPU memory to GPU

memory ooomect]
2. Load GPU program and execute, L2

L
caching data on chip for performance : :

3. Copy results from GPU memory to CPU
memory DRAM i

© NVIDIA Corporation 2011

Hello World!

int main(void) {
printf ("Hello World!\n");

return 0;

= Standard C that runs on the host

= NVIDIA compiler (nvcc) can be used to compile
programs with no device code

© NVIDIA Corporation 2011

Output:

S nvcc

hello world.cu
S a.out

Hello World!

$

<3

NVIDIA

Hello World! with Device Code <3

NVIDIA

__global void mykernel (void) {
}

int main(void) {
mykernel<<<1l,1>>>();
printf ("Hello World!\n");

return 0;

= Two new syntactic elements...

© NVIDIA Corporation 2011

Hello World! with Device Code <3

NVIDIA

__global void mykernel (void) {
}

= CUDA C/C++ keyword g1obal Indicates a function that:

= Runs on the device
» |s called from host code

* nvcc separates source code into host and device components

= Device functions (e.g. mykernel ()) processed by NVIDIA compiler
= Host functions (e.g. main ()) processed by standard host compiler

- gcg,cl.exe

© NVIDIA Corporation 2011

Hello World! with Device Code <3

NVIDIA

mykernel<<<1l,1>>>();

= Triple angle brackets mark a call from host code to device code
= Also called a “kernel launch”
= We'll return to the parameters (1,1) in a moment

= That's all that is required to execute a function on the GPU!

© NVIDIA Corporation 2011

Hello World! with Device Code <3

NVIDIA

__global void mykernel (void) {
}

int main (void) { Output:
mykernel<<<1l,1>>>();
printf ("Hello World!\n");

return 0;

S nvcc hello.cu
S a.out

Hello World!

S

* mykernel () does nothing, somewhat
anticlimactic!

© NVIDIA Corporation 2011

Parallel Programming in CUDA C/C++ rf,%A

= But wait... GPU computing is about massive
parallelism!

= We need a more interesting example...
= We'll start by adding two integers and build up + =
to vector addition
a b C

Addition on the Device <3

NVIDIA

= A simple kernel to add two integers

__global wvoid add(int *a, int *b, int *c) {

*c — ‘ka _|_ *b;

= As before giobal Isa CUDA C/C++ keyword meaning
= add () will execute on the device
= add () will be called from the host

© NVIDIA Corporation 2011

Addition on the Device <3

NVIDIA

= Note that we use pointers for the variables

__global void add(int *a, int *b, int *c) {
*ec = *a + *b;

}

= add () runs on the device, so a, b and ¢ must point to device memory

= We need to allocate memory on the GPU

© NVIDIA Corporation 2011

Memory Management

» Host and device memory are separate entities

= Device pointers point to GPU memory o
May be passed to/from host code N
May not be dereferenced in host code

= Host pointers point to CPU memory
May be passed to/from device code
May not be dereferenced in device code

= Simple CUDA API for handling device memory

= cudaMalloc (), cudaFree (), cudaMemcpy ()
= Similar to the C equivalents malloc (), free (), memcpy ()

© NVIDIA Corporation 2011

<3

NVIDIA

Addition on the Device: add () <3

NVIDIA

»= Returning to our add () kernel

__global wvoid add(int *a, int *b, int *c) {
*c = *a + *Db;

}

= |et’s take a look at main()...

© NVIDIA Corporation 2011

Addition on the Device: main () <3

NVIDIA

int main(void) {

int a, b, c¢; // host copies of a, b, c
1 ntRhd Ve d R o Gl // device copies of a, b, c
int size = sizeof (int);

// Allocate space for device copies of a, b, c
cudaMalloc ((void **)&d a, size);
cudaMalloc ((void **)&d b, size);

cudaMalloc ((void **)&d c, size);
// Setup input values

B = 4]
b = 7;

© NVIDIA Corporation 2011

Addition on the Device: main () <3

© NVIDIA Corporation 2011

NVIDIA

// Copy lnputs to device
cudaMemcpy (d a, é&a, size, cudaMemcpyHostToDevice);

cudaMemcpy (d b, &b, size, cudaMemcpyHostToDevice);

// Launch add () kernel on GPU
add<<<1l,1>>>(d a, d b, d c);

// Copy result back to host

cudaMemcpy (&c, d ¢, size, cudaMemcpyDeviceToHost);

// Cleanup
cudafFree(d a); cudaFree(d b); cudaFree(d c);

return 0;

<3

NVIDIA.

© NVIDIA Corporation 2011

Moving to Parallel <X

NVIDIA

= GPU computing is about massive parallelism
= S0 how do we run code in parallel on the device?

add<<< 1, 1 >>>();

l

add<<< N, 1 >>>();

» |nstead of executing add () once, execute N times in parallel

© NVIDIA Corporation 2011

Vector Addition on the Device <3

NVIDIA

= With add () running in parallel we can do vector addition

* Terminology: each parallel invocation of add () Is referred to as a block
= The set of blocks is referred to as a grid
= Each invocation can refer to its block index using blockIdx.x

__global wvoid add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

= By using blockIdx.x to Index into the array, each block handles a
different index

© NVIDIA Corporation 2011

Vector Addition on the Device <3

NVIDIA

__global wvoid add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

= On the device, each block can execute in parallel:

Block O Block 1
[C[O] = a[0] + b[O];} [c[l] =AMl s b[l];}
Block 2 Block 3

[c[2] = al[2] + b[2];} [C[3] = al[3] + b[3];}

© NVIDIA Corporation 2011

Vector Addition on the Device: main () >

© NVIDIA Corporation 2011

NVIDIA

#define N 512

int main(void) {

int *a, *b, *c; // host copies of a, b, c
int *dSa, Qeleris ciey; // device copies of a, b, c
int size = N * sizeof (int);

// Alloc space for device copies of a, b, c
cudaMalloc ((void **)&d a, size);
cudaMalloc ((void **)&d b, size);

cudaMalloc ((void **)&d c, size);

// Alloc space for host copies of a, b, ¢ and setup input values
a = (int *)malloc(size); random ints(a, N);
b = (int *)malloc(size); random ints (b, N);

c = (int *)malloc(size);

Vector Addition on the Device: main ()

© NVIDIA Corporation 2011

// Copy lnputs to device

cudaMemcpy (d a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy (d b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N blocks
add<<<N,1>>>(d a, d b, d c);

// Copy result back to host

cudaMemcpy (c, d ¢, size, cudaMemcpyDeviceToHost) ;

// Cleanup
free(a); free(b); free(c);
cudafFree(d a); cudaFree(d b); cudaFree(d c);

return 0;

>

NVIDIA

Review (1 of 2) >

NVIDIA

Difference between host and device
= Host CPU
= Device GPU

= Using global to declare a function as device code

= EXxecutes on the device
= Called from the host

» Passing parameters from host code to a device function

© NVIDIA Corporation 2011

Review (2 of 2) <3

NVIDIA

» Basic device memory management
= cudaMalloc ()
= cudaMemcpy ()

= cudaFree ()

= | aunching parallel kernels
= Launch n copies of add () with add<<<N, 1>>>(...) ;
= Use blockIdx.x to access block index

© NVIDIA Corporation 2011

<3

NVIDIA.

© NVIDIA Corporation 2011

CUDA Threads <3

NVIDIA

= Terminology: a block can be split into parallel threads

» Let's change add () to use parallel threads instead of parallel blocks

Using blocks:
e | RGO (LT o, GiREEEor S R
c[blockIdx.x] = al[blockIdx.x] + b[blockIdx.x]; ol L =22 1el @, ©l 9, € el

}

Using threads:
seendiLoRalNRS RGNl il a, int *b, inl @t CIE
c[threadIdx.x] = a[threadIldx.x] + b[threadIdx.x]:; add<<<1,N>>>{(d a, d o, d e}
}

© NVIDIA Corporation 2011

<3

NVIDIA.

COMBINING THREADS
AND BLOCKS

© NVIDIA Corporation 2011

Combining Blocks and Threads

= We've seen parallel vector addition using:

» Let’s adapt vector addition to use both blocks and threads

Many blocks with one thread each
One block with many threads

7

\.
\

N
~

© NVIDIA Corporation 2011

<3

NVIDIA

Indexing Arrays with Blocks and Threads >

NVIDIA

= No longer as simple as using blockIdx.x and threadIdx.x
= Consider indexing an array with one element per thread (8 threads/block)

threadIdx.x threadIdx.x threadIdx.x
0/1/2|3|4|5|6|7|0(1|2|3{4|5|6|7 0(1(2(3(4/5(6|7
N N y, N Y,
Y Y Y
blockIdx.x = 0 blockIdx.x =1 blockIdx.x = 3

= With M threads/block a unique index for each thread is given by:

int index = threadIdx.x + blockIdx.x * M;

© NVIDIA Corporation 2011

Vector Addition with Blocks and Threads <3

NVIDIA

= Use the built-in variable v1ockpim.x for threads per block

int index = threadIdx.x + blockIdx.x * blockDim.x;

= Combined version of add () to use parallel threads and parallel blocks

~_global wvoid add(int *a, int *b, int *c) {
int index = threadIldx.x + blockIdx.x * blockDim.x;

c[index] = a[index] + b[index];

= What changes need to be made in main () ?

© NVIDIA Corporation 2011

Addition with Blocks and Threads: main () >

NVIDIA

#define N (2048%2048)
#define THREADS PER BLOCK 512

int main(void) {

int *aj. *byie; // host copies of a, b, c
int *d a, *d b, *d c; // device copies of a, b, c
int size = N * sizeof (int);

// Alloc space for device copies of a, b, c¢
cudaMalloc ((void **)&d a, size);
cudaMalloc ((void **)&d b, size);

cudaMalloc ((void **)&d c, size);

// Alloc space for host copies of a, b, ¢ and setup input values

a = (int *)malloc(size); random ints(a, N);
b = (int *)malloc(size); random ints (b, N);
c = (int *)malloc(size);

© NVIDIA Corporation 2011

Addition with Blocks and Threads: main () >

NVIDIA

// Copy lnputs to device
cudaMemcpy (d a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy (d b, b, size, cudaMemcpyHostToDevice);

// Launch add () kernel on GPU
add<<<N/THREADS PER BLOCK, THREADS PER BLOCK>>>(d a, d b, d c);

// Copy result back to host
cudaMemcpy (c, d ¢, size, cudaMemcpyDeviceToHost) ;

// Cleanup
free(a); free(b); free(c);
cudafFree(d a); cudaFree(d b); cudaFree(d c);

return 0;

© NVIDIA Corporation 2011

Handling Arbitrary Vector Sizes <3

NVIDIA

» Typical problems are not friendly multiples of vicckpim.x

* Avoid accessing beyond the end of the arrays:

__global void add(int *a, int *b, int *c, int n) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
if (index < n)
c[index] = al[index] + b[index];

= Update the kernel launch:
add<<< (N + M-1) / M,M>>>(d a, d b, d c, N);

© NVIDIA Corporation 2011

Why Bother with Threads? <X

NVIDIA

*» Threads seem unnecessary

= They add a level of complexity
= What do we gain?

= Unlike parallel blocks, threads have mechanisms to:
= Communicate
= Synchronize

* To look closer, we need a new example...

© NVIDIA Corporation 2011

<3

NVIDIA.

COOPERATING
THREADS

© NVIDIA Corporation 2011

1D Stencll <3

NVIDIA

= Consider applying a 1D stencil to a 1D array of elements
= Each output element is the sum of input elements within a radius

» [f radius is 3, then each output element is the sum of 7 input elements:

|

\ J \ J
A4 h 4

radius radius

© NVIDIA Corporation 2011

Implementing Within a Block

» Each thread processes one output element
blockDim.x elements per block

* |nput elements are read several times
= With radius 3, each input element is read seven times

.
= SP0SSSSSSSISrN

© NVIDIA Corporation 2011

>

NVIDIA

Sharing Data Between Threads <3

NVIDIA

= Terminology: within a block, threads share data via shared memory
= Extremely fast on-chip memory, user-managed
* Declare using shared |, allocated per block

= Data is not visible to threads in other blocks

>

Implementing With Shared Memory rianA

» Cache data in shared memory
= Read (blockDim.x + 2 * radius) input elements from global memory to

shared memory
= Compute blockDim.x output elements

= Write blockDim.x output elements to global memory

= Each block needs a halo of radius elements at each boundary

.. |
: - halo an right

SSSSSSSSSPISNSSY
Y

blockDim.x output elements

halo on left

out

© NVIDIA Corporation 2011

Stencil Kernel <3

NVIDIA.

__global wvoid stencil 1ld(int *in, int *out) ({
__shared__ int temp[BLOCK SIZE + 2 * RADIUS]; N

int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory

temp[lindex] = inl[gindex]; I70SSSeSessssssssss 7 1 7
if (threadIdx.x < RADIUS) {
temp[lindex - RADIUS] = in[gindex - RADIUS]; [t e s S

temp[lindex + BLOCK SIZE] = in[gindex + BLOCK_SIZE]; SE@SSSSSSSSSSSNS000ES

© NVIDIA Corporation 2011

Stencil Kernel <3

NVIDIA

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

// Store the result

out [gindex] = result;

© NVIDIA Corporation 2011

Data Race! <3

NVIDIA

* The stencil example will not work...

= Suppose thread 15 reads the halo before thread 0 has fetched it...

temp[lindex] = in[gindex]; Store at temp[18]
if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS = in[gindex - RADIUS];

temp[lindex + BLOCK SIZE] = in[gindex + BLOCK SIzZE]; Skipped, threadldx > RADIUS
}

int result = 0;

result += temp[lindex + 1]; Load from temp[19]

© NVIDIA Corporation 2011

__syncthreads() N>

NVIDIA

" vold syncthreads();

Synchronizes all threads within a block
= Used to prevent RAW / WAR / WAW hazards

= All threads must reach the barrier
= |n conditional code, the condition must be uniform across the block

© NVIDIA Corporation 2011

Stencil Kernel <3

NVIDIA

__global wvoid stencil 1ld(int *in, int *out) ({
___shared int temp[BLOCK SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;

int lindex = threadIdx.x + radius;

// Read input elements into shared memory

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {
temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK SIZE] = in[gindex + BLOCK SIZE];

// Synchronize (ensure all the data is available)

__syncthreads() ;

© NVIDIA Corporation 2011

Stencil Kernel <3

NVIDIA

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

// Store the result

out [gindex] = result;

© NVIDIA Corporation 2011

Review (1 of 2) >

NVIDIA

» Launching parallel threads
= Launch ~ blocks with m threads per block with kernel<<<N, M>>> (...) ;
= Use blockIdx.x to access block index within grid
= Use threadIdx.x t0o access thread index within block

= Allocate elements to threads:

int index = threadIdx.x + blockIdx.x * blockDim.x;

© NVIDIA Corporation 2011

Review (2 of 2) >

NVIDIA

» Use shared to declare a variable/array in shared memory

= Data is shared between threads in a block
= Not visible to threads in other blocks

» Use syncthreads () as a barrier
= Use to prevent data hazards

© NVIDIA Corporation 2011

<3

NVIDIA.

© NVIDIA Corporation 2011

<3

Coordinating Host & Device TUInTA

= Kernel launches are asynchronous
= Control returns to the CPU immediately

* CPU needs to synchronize before consuming the results

cudaMemcpy () Blocks the CPU until the copy is complete
Copy begins when all preceding CUDA calls have completed

cudaMemcpyAsync () Asynchronous, does not block the CPU
cudabeviceSynchronize () Blocks the CPU until all preceding CUDA calls have completed

© NVIDIA Corporation 2011

Reporting Errors >

NVIDIA

= All CUDA API calls return an error code (cudakError t)

= Error in the API call itself
OR
= Errorin an earlier asynchronous operation (e.g. kernel)

= Get the error code for the last error:

cudaError t cudaGetlLastError (void)

= Get a string to describe the error:

char *cudaGetErrorString(cudaError t)

printf ("$s\n", cudaGetErrorString(cudaGetLastError())):

© NVIDIA Corporation 2011

Device Management <3

NVIDIA

= Application can query and select GPUs
cudaGetDeviceCount (int *count)
cudaSetDevice (1nt device)
cudaGetDevice (1nt *device)

cudaGetDeviceProperties (cudaDeviceProp *prop, 1nt device)

= Multiple CPU threads can share a device

= A single CPU thread can manage multiple devices
cudaSetDevice (i) to select current device
cudaMemcpy (..) for peer-to-peer copiest

 requires OS and device support
© NVIDIA Corporation 2011

Introduction to CUDA C/C++ <A

NVIDIA

= \What have we learnt?
= Write and launch CUDA C/C++ kernels

- _ global , blockIdx.x, threadIdx.x, <<<>>>
= Manage GPU memory

- cudaMalloc (), cudaMemcpy (), cudaFree ()
= Manage communication and synchronization
sy chared |, d@symernrearedsit)

- cudaMemcpy () VS cudaMemcpyAsync (), cudaDeviceSynchronize ()

© NVIDIA Corporation 2011

Resources <3

NVIDIA

» We skipped some detalls, you can learn more:
= CUDA Programming Guide

= CUDA Zone - tools, training, webinars and more
http://developer.nvidia.com/cuda

© NVIDIA Corporation 2011

