5 \\ - / B ‘l.,i : . 1 .'-,‘.r

p\ David Luebke
Director, NVIDIA Research

Graphics Processing Unit (GPU)

T

-

i
=

Bt

i u
b e “‘a"' fr

Al
1]

bE R

. YT
R .

L

o

|
=
)
2

— - ——— e et

. .\
oy W1 i
Y W WS-y EERES T

! .8

U S
ARy
pre" "‘Q'.I o ||

What GPUs Do

DR L ¢

GeForc

Parallel Computing, lllustrated

The “New” Moore’s Law

= Computers no longer get faster, just wider
= You must re-think your algorithms to be parallel !

= Data-parallel computing is most scalable solution

The World’s Programmers

Why GPU Computing?

1200 - 160 -
Tesla 20-series 140 - Tesla 20-serie
1000 - _
Tesla 10-series 120 -
i Tesla 10-serie
800 100 -
600 - 80 -
Tesla 20-series
60 -
400 -
Westmere
40 1 Nehalem 3 GHz
200 - Tesla 10-series ehalem Westmere 3 GHz
3 GHz 3 GHz 20
0 T T T T 0 T T T T T T T 1
2003 2004 2005 2006 2007 2008 2009 2010 2003 2004 2005 2006 2007 2008 2009 2010
GFlops/sec GBytes/sec
=@= Single Precision: NVIDIA GPU =#= Single Precision: x86 CPU == NVIDIA GPU == X86 CPU

";‘r';'” =#= Double Precision: NVIDIA GPU == Double Precision: x86 CPU ECC off

Accelerating Insight

4.6 Days
2.7 Days 3 Hours
8 Hours
30 Minutes _
27 Minutes 13 Minut 16 Minutes
inutes
= B 2" 0m
Computational Neurological Cell Phone RF 3DCT
Chemistry Modeling Simulation Ultrasound

| CPU Only B Heterogeneous with Tesla GPU

Tracking Space Junk

= Air Force monitors 19,000 pieces of space debris
L o e SR

» Even a paint flake can destroy spacecraft

» 21x CUDA speedup - narrow uncertainty bands
and reduce false alarms

Modeling Air Traffic

Air traffic is increasing

» Predictive modeling can avoid airport overloading

= Variables: flight paths, air speed, altitude,
descent rates

* NASA ported their model to CUDA

* 10 minute process
reduced to 3 second

Detecting IEDs

Reducing Radiation from CT Scans

28,000 peoplel/year develop
cancer from CT scans

UCSD: advanced CT
reconstruction reduces
radiation by 35-70x

CPUs: 2 hours CUDA: 2 minutes
(unusable) (clinically practical)

Operating on a Beating Heart

Only 2% of surgeons can
operate on a beating heart

,_" Patient stands to lose 1 point of
~ 1Q every1l0 min with heart
stopped

GPU enables real-time motion
* compensation to virtually stop
beating heart for surgeons:

- Courtesy Laboratoire d’Informatique de Robotique et de Microelectronique de Montpellier

Simulating Shampoo

€€ The outcome is quite
spectacular...with two GPUs we
can run a single simulation as
fast as on 128 CPUs of a Cray
XT3 or on 1024 CPUs of an IBM
BlueGene/L machine. 33

L We can try things that were

undoable before. It still blows

Axel Kohlmeyer
Temple University

Surfactant Simulation
)!

Cleaning Cotton

USDA

Problem: Cotton is over-cleaned,

.“ causing fiber damage

GPU-based machine vision enables

real-time feedback during cleaning

96% lower fiber damage
S100M additional potential revenue

Yy
“Parallel Algorithm for GPU Processing; for use in High Speed Machine Vision Sensing of Cotton Lint Trash”, Mathew G. Pelletier, February 8, 2008

GPUs Power 3 of the Top 5...

2500

2000

1500

Gigaflops

1000

500

Tianhe-1A Jaguar Nebulae Tsubame Tera 100

...Using Less Power

spemesaln

2500
2000
500
1000
500

L]
sdo)jesin

Jaguar Nebulae Tsubame Tera 100

Tianhe-1A

ar

H

\
-

N\

aph

| -

Early 3D Graphics

Perspective study of a chalice
Paolo Uccello, circa 1450

Early Graphics Hardware

Artist using a perspective machine
Albrecht Durer, 1525

Perspective study of a chalice
Paolo Uccello, circa 1450

Early Electronic Graphics Hardware

i e 0 Y T .
i’ e > X
“.,’,,. . e 8 K b

SKETCHPAD: A Man-Machine Graphical Communication System
Ivan Sutherland, 1963

The Graphics Pipeline

Matny Engines

N —

-

Sealer Engines Ciipper Engines

Figure 3: Geomelry System; each block is a Geometry Engine.

ograph of the Geomet

The Geometry Engine: A VLSI Geometry System for Graphics
Jim Clark, 1982

/

The Graphics Pipeline

Vertex Transform & Lighting

Triangle Setup & Rasterization

Texturing & Pixel Shading

Depth Test & Blending

)
»

© NVIDIA Corporation 2011

The Graphics Pipeline

Vertex Transform & Lighting

Triangle Setup & Rasterization

Texturing & Pixel Shading

Depth Test & Blending

)
»

© NVIDIA Corporation 2011

The Graphics Pipeline

Vertex Transform & Lighting

Triangle Setup & Rasterization

Texturing & Pixel Shading

Depth Test & Blending
y

o

© NVIDIA Corporation 2011

The Graphics Pipeline

Vertex Transform & Lighting

Triangle Setup & Rasterization

Texturing & Pixel Shading

Depth Test & Blending

)
»

© NVIDIA Corporation 2011

The Graphics Pipeline

4 X I
A . & 5 Pla 2
230 X 3 ’g}‘? | L' e,
1

: J

© NVIDIA Corporation 2011

The Graphics Pipeline

Rasterize

est & Blend

Framebuffer

© NVIDIA Corporation 2011

Key abstraction of real-time graphics

Hardware used to look like this

One chip/board per stage

Fixed data flow through pipeline

SGI RealityEngine (1993)

System Bus —

Command geometry
_— =

Processor board

Geometry
. _—
Engines

Triangle Bus —=

Rasterize

Fragment -
Generators

Image
Engines

raster memory board raster memory board

q]

display generator board \——}—> video

RealityEngine Graphics
© NVIDIA Corporation 2011 Kurt Akeley ’ SlGGRAPH 93

Framebuffer

SGI InfiniteReality (1997)

ometry Board

metry-Raster FI

Vertex Bus

Fragment Generator |

Image
Engines

Raster Memory Board : Raster Memory B Memory Board

Board

Display

InfiniteReality: A real-time graphics system
© NVIDIA Corporation 2011 Montrym et al., SIGGRAPH 97

The Graphics Pipeline

® Remains a useful abstraction

Rasterize ¢ Hardware used to look like this

Test & Blenc

Framebuffer

© NVIDIA Corporation 2011

The Graphics Pipeline

pixel out
main (uniform sampler2D texture : TEXUNIT 0, pixel in
{
pixel out OUT;
float d= clamp (1.0 - pow(dot (IN.lightdist, IN.lighy
float3 color = tex2D(texture, IN.texcoord).rgb;
OUT.color = color * (d + 0.4);
return OUT;
} /—

Rasterize ¢ Hardware used to look like this:

® Vertex, pixel processing became
programmable

Test & Blend

)
4

© NVIDIA Corporation 2011

The Graphics Pipeline

pixel out
main (uniform sampler2D texture : TEXUNIT 0, pixel in
{

m
m

Rasterize

I

m

© NVIDIA Corporation 2011

pixel out OUT;

float d= clamp (1.0 - pow(dot (IN.lightdist, IN.lighy
float3 color = tex2D(texture, IN.texcoord).rgb;
OUT.color = color * (d + 0.4);

® Hardware used to look like this

® Vertex, pixel processing became
programmable

* New stages added

The Graphics Pipeline

main (uniform sampler2D texture : TEXUNIT 0, pixel in
{

pixel out OUT;

float d= clamp (1.0 - pow(dot (IN.lightdist, IN.lighy
float3 color = tex2D(texture, IN.texcoord).rgb;
OUT.color = color * (d + 0.4);

TeSSe"atlon :turn oUT; /
* Hardware used to look like this

® Vertex, pixel processing became

Rasterize
programmable

* New stages added

est & Blend

Eramebuffer GPU architecture increasingly
centers around shader execution

il

© NVIDIA Corporation 2011

Modern GPUs: Unified Design

Discrete Design Unified Design

l

l

Y

Shader B ibuffer ibuffer ibuffer
Shader
—_— Core

m

Vertex shaders, pixel shaders, etc. become threads
running different programs on a flexible core

© NVIDIA Corporation 2011

10SS800.d pealy]

Setup & Rasterize
Pixel Thread Issue

|

()
>
(72]
K2
o
©
)
—
e
T
=
o
D
O

E5
alam

L]
L]
[
L]
[
L]
[
L]
[
L]
[
L]
L]
[]
L]
L]

!

Input Assembler
Vertex Thread Issue

3
LI
|} |

GeForce 8: Modern GPU Architecture

l
]

.

Framebuffer

|
HHHH

{

Framebuffer

DDDD
GICICIE]

|
E

L2
|

Framebuffer

[sAll]
N[

|| |

P[]
iil

!

z

:

Framebuffer

4

:

[se)[]
/.

|

HHH
g

E3m
L0
[]

[seI[]
L0
L0

|
3|

Framebuffer

|
:

:

Framebuffer

© NVIDIA Corporation 2011

GeForce 8: Modern GPU Architecture

}
Input Assembler l
Vertex Thread Issue
\ 4 4
[se] (1| fsel C | (=2) [=el se|]| (=2l] [sel (1| fs=l | Fs=) (sl
CICIEE0 g CIE E1E CICI |1 CICIEE | I EIE
L) 0 0 D 0 1 o] T D g D D CICIEE | I EIE
CIE 0) I I D g D) T LI CIE i CI) CIE

—
O
723
173
@D
O
(©)
S
(a
=)
©
[¢5)
—
<
—

© NVIDIA Corporation 2011

Modern GPU Architecture: GT200

Input Assembler

Vertex Thread Issue

Setup & Rasterize
Pixel Thread Issue

Geom Thread Issue

[sel || eI [s2]
I o o
N
I o

sl]
[]
B8

v
[sel L} el [s2]
I o o
N
N o

[
[]
B8

0 B8
| o
| o
(52 | 2 =

{k

I O
I O
[o |
------- 00 [0 [T

N o
N o
N o
el [1 [sel]| Pl

Thread Scheduler

o
I |
I |
[seIL_1flfsAIl]

v v v v v v v v
| - Y] - JU) o JG e JE

I

1

Lo

Fermi

.Qb.
—
-
.
&)
)]

S

i
O
—
<
D
al

O
.
=
)]
-
 —
D

O

NVIDIA “Fermi” architecture

© NVIDIA Corporation 2011

GPUs Today

Lessons from Graphics Pipeline

® Throughputis paramount

® Create, run, & retire lots of threads very rapidly

“Fermi”

® Use multithreading to hide latency 3B xtors

GeForce 8800
681M xtors

GeForce FX
125M xtors

GeForce 3

GeForce® 256 60M xtors
RIVA 128 23M xtors
3M xtors

1995 2000 2005

N\

BN

o

ut

comp

uper

N\

o

How to build a parallel machine:
SIMD

S Y

|
i
|
4
1
|
5

Thinking Machines CM-2

-

MasPar MP1 (front), Goddard MPP (back)

How to build a parallel machine:
Hardware Multithreading

Tera MTA

How to build a parallel machine
Symmetric Multiprocessing

|

T T i IR ST, T

I - - -— e -————

l
Ll -Ellﬂl'l{ﬂﬁl- ‘

SGI Challenge

LU

Intel Core2 Duo

Fermi, Oversimplified

32-wide SIMD (two 16-wide datapaths)

48-way hardware multithreading 5.577::}' HIERE L

W RTT T AT
= e e e

X 16-way SMP

B | : A‘"I
i b willha s ,wh’l"'ﬁ 7

LT
L

24576 threads in flight

£ TR TR <-.-v<.B
L
B

'1

@ 512 FMA ops per clock

p—
==
=%
L=
.
B
124

GPU Computing 1.0: GPGPU

(Ignoring prehistory: lkonas, Pixel Machine, Pixel-Planes...)
Compute pretending to be graphics

» Disguise data as triangles or textures

» Disguise algorithm as render passes & shaders

—>Trick graphics pipeline into doing your computation!

Typical GPGPU Constructs

buffar 0 b ffar 1

513 x 513

513 x 513

237w 287
i

buffer 0

Typical GPGPU Constructs

buffar 0 b ffar 1

513 x 513

513 x 513

buffer 0

P A Multigrid Solver for Boundary Value Problems Using Programmable Graphics Hardware
: Nolan Goodnight et al., 2003

Thread

GPU Computing 2.0: CUDA

Serial Code

Kernel foo ()

e -

Global barrier

)Y)Y NS
Kernel bar ()
N OO
Serial Code

e Un

P

ft

N

GPU Computing 3.0: An Ecosystem

Languages & API’s Hardware & Product Lines Research & Education

Micrpso t*

CUDA C/C++ plifYan Ml

PGI WORKSTATION

Algorithmic
Sophistication

Cloud Services

amazon

web services"
Tools & Partners Mathematical Integrated
Packages Development Environment

http://aws.amazon.com/

GPU Computing by the numbers

BM)M CUDA Capable GPUs
m CUDA Toolkit Downloads
m Active CUDA Developers

] Universities Teaching CUDA

CUDA Centers of Excellence

e

na

10

at

t

O

Workloads

® Each GPU is designed to target a mix of known
and speculative workloads

» The art of GPU design is choosing these workloads
(and shipping on schedule!)

What workloads will drive future GPUs?
» High performance computing
= Graphics

> = Computational graphics

Filtering

® Separable filters
® Depth of field
® Film bloom
® Subsurface scattering

i¢c diffusi
field

dent fil
ing

Realistic Skin Rendering
©NVIDIA Corporation 2011 d’Eon, Luebke, Enderton EGSR 2003

Histogram

® Luminance values for
tone mapping

¢ Sample distribution for
shadow map creation

SEIE Distribut‘i"d?"h Sﬁe;a%w I\/Iab%q '
L HipRém Valx's Befoha, 480I®11

© NVIDIA Corporation 2011

Rasterization as lteration

* Rasterize convex hull of moving triangle

¢ Ray trace against triangle at each pixel

10x Zoom

P - - ——

e) =1 Geometry f) 2D AABB Geoetry g) 2D Convex Hull Geometry h) 2D .. Full Wirefram

v

Real-Time Stochastic Rasterization on Conventional GPU Architectures
McGuire, Enderton, Shirley, Luebke, HPG 2010

© NVIDIA Corporation 2011

Rasterization as lteration

* Darken pixels by % of hemisphere blocked by nearby triangles

® Compute triangle regions of influence to find affected pixels

Two Methods for Fast Ray-Cast Ambient Occlusion, Samuli Laine & Tero Karras, EGSR 2010

CUDA Tessellation

* Flexible adaptive geometry generation

Recursive subdivision

\

N\

Vi

il

Real-Time View-Dependent Rendering of Parametric Surfaces

Eisenacher, Meyer, Loop 2009

© NVIDIA Corporation 2011

Ray Tracing

OptiX: A General-Purpose Ray Tracing Engine, Parker et al., SIGGRAPH 2010

Key GPU Workloads

= Computational graphics

» Scientific and numeric computing
* |[mage processing - video & images
= Computer vision

= Speech & natural language

» Data mining & machine learning

Key CUDA Challenges

= Express other programming models elegantly

— Persistent thread blocks: fill machine, fetch work, repeat
— Producer-consumer: work queues, work stealing, ...

— Nested & irregular parallelism: divide&conquer, BFS, ...

— Task-parallel: kernel, thread block or warp as parallel task

= Express locality: deep memories, compute “places”

* Improve & mature development environment

Key GPGPU Researcher Challenges

= Foster high-level libraries, languages, platforms

— Domain-specific tools & packages

— “Horizontal” programming layers & patterns

= Rethink algorithms, numerics, approaches

— Computation is cheap

— Data movement is costly

Think parallel !

Final Thoughts - Education

= We should teach parallel computing in CS 1 or CS 2
— Computers don’t get faster, just wider
— Manycore is the fultre of computing

Insertion Sort Heap Sort Merge Sort

\ J
Y

Which goes faster on large data?

Students need to understand this!

dluebke®@nvidia.com

>

NVIDIA.

i L LR

Computational Challenge

S e

N —

-
o T T
\,\ b e

© NVIDIA Corporation 2011

Fermi Features, Spoken in HPC <X

NVIDIA

* Full scatter-gather and automatic predication to simplify
SIMD programming (SIMT)

* Hardware accelerated task distributor for dynamic load
balancing

* Dynamically partitionable register file

* High performance atomic operations

® On-chip crossbar network

* Local scratchpad per core for fine-grained thread coop
* |EEE 754-2008 floating point with high-speed fp64

* High-speed GDDR memory interface

* Optional ECC protection on DRAM, L2, L1, ShMem, RF
SwMature programming models based on C, C++, Fortran

CUDA
Examples

<3

CUDA C Example

NVIDIA.

//:;g1oba1__ void saxpy_parallel(int n, float a, float *x, float *y) ‘\\
{

int i = blockIdx.x*blockDim.x + threadidx.x;
if (3 < n) y[i]l = a*x[i] + y[il;
} Parallel C Code

// Invoke parallel SAXPY kernel with 256 threads/block
int nblocks = (n + 255) / 256;

\\f?xpy_para11e1<<<nb10cks, 256>>>(n, 2.0, X, Yy); 4//

Example: Parallel Reduction <X

)

)

© NVIDIA Corporation 2011

Summing up a sequence with 1 thread:
int sum = 0;
for (int i=0; i<N; ++i) sum += x[1i];

Parallel reduction builds a summation tree
® each thread holds 1 element
¢ stepwise partial sums

>

=
N threads need log N steps (f”’jj
one possible approach: ;I‘
Butterfly pattern ft ft

»

»

Example: Parallel Reduction <X

)

Summing up a sequence with 1 thread:
int sum = 0;
for (int i=0; i<N; ++i) sum += x[1i];

)

Parallel reduction builds a summation tree
® each thread holds 1 element
¢ stepwise partial sums

N threads need log N steps (j
one possible approach: < > I

Butterfly pattern

»

»

InEEEEN)

© NVIDIA Corporation 2011

Parallel Reduction for 1 Block <X

// INPUT: Thread i holds wvalue x i
ifmieesite=_ h reagdilidx .S

—eolickec R Nt S Ui 'eeiesEizc R
// One thread per element

sum[1] = X 1; syncthreads();

for {int biltdcilc(eldRWA=" -~ ot Jig™sciic,/ —2)
{
int t=sum[i]+sum[i®bit]; syncthreads();

SUM [1] ~syncthreads () ;

}
// OUTPUT: Every thread now holds sum in sum/[i]

© NVIDIA Corporation 2011

thrust::sort <X

NVIDIA

#include <thrust/host_vector.h>
#include <thrust/device vector.h>
#include <thrust/generate.h>
#include <thrust/sort.h>

#include <cstdlib>

int main(void)

{

// generate random data on the host
thrust: :host_vector<int> h_vec(1000000) ;

thrust: :generate (h_vec.begin(), h_vec.end(), rand);

// transfer to device and sort

thrust: :device_vector<int> d _vec = h_vec;
// sort 1B 32b keys/sec on Fermi

thrust::sort(d_vec.begin(), d_vec.end())

return 0O;

http://fthrust.googlecode.com

© NVIDIA Corporation 2011

