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ABSTRACT 

In this paper we describe a GPU parallelization of the 3D finite 
difference computation using CUDA.  Data access redundancy is 
used as the metric to determine the optimal implementation for 
both the stencil-only computation, as well as the discretization of 
the wave equation, which is currently of great interest in seismic 
computing.  For the larger stencils, the described approach 
achieves the throughput of between 2,400 to over 3,000 million of 
output points per second on a single Tesla 10-series GPU.  This is 
roughly an order of magnitude higher than a 4-core Harpertown 
CPU running a similar code from seismic industry.  Multi-GPU 
parallelization is also described, achieving linear scaling with 
GPUs by overlapping inter-GPU communication with 
computation. 

Categories and Subject Descriptors 

D.1.3 [Concurrent Programming]: Parallel Programming.  

General Terms 

Algorithms, Performance, Measurement. 

Keywords 

Finite Difference, GPU, CUDA, Parallel Algorithms. 

1. INTRODUCTION 
In this paper we describe a parallelization of the 3D finite 
difference computation, intended for GPUs and implemented 
using NVIDIA’s CUDA framework.  The approach utilizes 
thousands of threads, traversing the volume slice-by-slice as a 2D 
“front” of threads in order to maximize data reuse from shared 
memory.   GPU performance is measured for the stencil-only 
computation (Equation 1), as well as for the finite difference 
discretization of the wave equation.  The latter is the basis for the 
reverse time migration algorithm (RTM) [6] in seismic 
computing. 

An order-k in space stencil refers to a stencil that requires k input 
elements in each dimension, not counting the element at the 
intersection.  Alternatively, one could refer to the 3D order-k 
stencil as a (3k + 1)-point stencil.  Equation below defines the 
stencil computation for a three-dimensional, isotropic case.  

t

zyx
D ,, refers to data point at position (x,y,z), computed at time-step 

t, cj is a multiplicative coefficient applied to elements at distance j 
from the output point. 
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The paper is organized as follows.  Section 2 reviews the CUDA 
programming model and GPU architecture.  CUDA 
implementation of the 3D stencil computation is described in 
Section 3.  Performance results are presented in Section 4.  
Section 5 includes the conclusions and some directions for future 
work. 

 

 

Figure 1. A high-level view of GPU architecture. 

 

2. CUDA AND GPU ARCHITECTURE 
CUDA allows the programming of GPUs for parallel computation 
without any graphics knowledge [5][7].  As shown in Figure 1, a 
GPU is presented as a set of multiprocessors, each with its own 
stream processors and shared memory (user-managed cache).  The 
stream processors are fully capable of executing integer and single 
precision floating point arithmetic, with additional cores used for 
double-precision.  All multiprocessors have access to global 
device memory, which is not cached by the hardware.  Memory 
latency is hidden by executing thousands of threads concurrently.  
Register and shared memory resources are partitioned among the 
currently executing threads.  There are two major differences 
between CPU and GPU threads.  First, context switching between 
threads is essentially free – state does not have to be 
stored/restored because GPU resources are partitioned.  Second, 
while CPUs execute efficiently when the number of threads per 
core is small (often one or two), GPUs achieve high performance 
when thousands of threads execute concurrently. 

CUDA arranges threads into threadblocks.  All threads in a 
threadblock can read and write any shared memory location 
assigned to that threadblock.  Consequently, threads within a 
threadblock can communicate via shared memory, or use shared 
memory as a user-managed cache since shared memory latency is 
two orders of magnitude lower than that of global memory.  A 
barrier primitive is provided so that all threads in a threadblock 
can synchronize their execution.  More detailed descriptions of 
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the architecture and programming model can be found in [5] 
[7][2]. 

The Tesla 10-series GPUs (Tesla S1060/S1070) contain 30 
multiprocessors, each multiprocessor contains 8 streaming 
processors (for a total of 240), 16K 32-bit registers, and 16 KB of 
shared memory.  Theoretical global-memory bandwidth is 102 
GB/s, available global memory is 4GB. 

3. EFFICIENT 3D STENCIL 

COMPUTATION ON TESLA GPUs 
Utilizing memory bandwidth efficiently is key to algorithm 
implementation on GPUs, since global memory accesses are not 
implicitly cached by the hardware.  We use memory access 

redundancy as a metric to assess implementation efficiency.  
Specifically, redundancy is the ratio between the number of 
elements accessed and the number of elements processed.  Where 
applicable, we refer to read redundancy, which does not include 
writes in the access count.  Write redundancy is defined similarly.  
Ideally, read and write redundancies would be 1 for the stencil-
only computation, overall redundancy would be 2. 

 

Figure 2. 16x16 data tile and halos for order-8 stencil in 

shared memory 

The naïve approach to compute an order-k stencil refetches all (3k 
+ 1) input elements for every output value, leading to (3k + 1) 
read redundancy.  Our implementation reduces redundancy by 
performing calculations from shared memory.  Since 16KB of 
shared memory available per multiprocessor is not sufficient to 
store a significantly large 3D subdomain of a problem, a 2D tile is 
stored instead (Figure 2).  Extension of the computation to the 3rd 
dimension is discussed in the next section.  Threads are grouped 
into 2D threadblocks to match data tiling, assigning one thread 
per output element.  Given an order-k stencil and n×m 
threadblocks and output tiles, an (n + k)×(m + k) shared memory 
array is needed to accommodate the data as well the four halo 
regions.  Even though space for k2 elements could be saved by 
storing the halos separately (the four (k/2)×(k/2) corners of the 
array are not used), savings are not significant enough to justify 
increased code complexity.  Since halo elements are read by at 
least two threadblocks, the read redundancy of loading the data 
into shared memory arrays is (n·m + k·n + k·m)/(n·m).  For 
example, read redundancy is 2 for an order-8 stencil when using 
threadblocks configured as 16x16 threads (24×24 shared memory 
array).  Increasing threadblock and tile dimensions to 32×32 
reduces redundancy to 1.5, in this case threadblocks contain 512 
threads (arranged as 32x16), each thread computing two output 
values. 

3.1 Extending the Computation to 3D 
Once a 2D tile and halos are loaded into shared memory, each 
threadblock straightforwardly computes the 2D stencil for its 
output tile.  All the data is fetched from shared memory, the 
latency of which is two orders of magnitude lower than that of 
global memory.  There are two approaches to extend the 
computation to three dimensions: two-pass and single-pass.  
These are similar to stencil approaches described for Cell 
processors in [1][4]. 

As the name suggests, the two-pass approach traverses the input 
volume twice.  During the first pass only the 2D stencil values are 
computed.  The 1D stencil (in the remaining dimension) is 
computed during the second pass, combining it with the partial 
results from the first pass.  Consequently, read redundancy is 3 
plus redundancy due to halos – the first pass reads tiles and halos 
into shared memory, the second pass reads the original input and 
partial results.  Returning to the example of an order-8 stencil and 
16×16 tiles, read redundancy is 4.  Since each pass writes output, 
write redundancy is 2.  Overall redundancy is 6, which is an 
improvement over the naïve approach, which has redundancy of 
26 (counting reads and writes).  Efficiency can be further 
increased with the single-pass approach. 

 

 

Figure 3. Element re-use by a group of threads 

 

The two passes described above can be merged into a single one.  
Let z be the slowest varying dimension.  If we assign a thread to 
compute output values for a given column along z, no additional 
shared memory storage is needed.  Threads of a given threadblock 
coherently traverse the volume along z, computing output for each 
slice.  While the elements in the current slice are needed for 
computation by multiple threads, elements in the slices preceding 
and succeeding the current z-position are used only by the threads 
corresponding to the elements’ (x, y) position (Figure 3).  Thus, 
input elements in the current slice are stored in shared memory, 
while each thread stores the input from the preceding/succeeding 
k/2 slices it needs in local variables (which in CUDA are usually 
placed in registers).  Using the case depicted in Figure 3, the four 
threads would access the 32 elements in the xy-plane from shared 
memory, while the elements along the z axis would be stored in 
corresponding thread’s registers.  Once all the threads in a 
threadblock write the results for the current slice, values in the 
local variables are “shifted,” reading in a new element at distance 
(k/2 + 1): the k local variables and shared memory are used as a 
queue.  Output is written exactly once, input is read with (n·m + 
k·n + k·m)/(n·m) redundancy due to halos.  For example, 
redundancy for an order-8 stencil with 16x16 tiles is 3, compared 
to 6 of the two-pass approach. 
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4. EXPERIMENTAL RESULTS 
This section describes experiments with two types of kernels – 
stencil-only and finite difference of the wave equation.  
Performance was measured on Tesla S1070 servers, containing 
four GPUs each.  S1070 servers were connected to cluster CPU 
nodes running CUDA 2.0 toolkit and driver (64-bit RHEL).  
Throughput in millions of output points per second (Mpoints/s) 
was used as the metric.  Multi-GPU experiments are also included 
in this section, since practical working sets for the finite-
difference in time domain of the wave equation exceed the 4GB 
memory capacity of currently available Tesla GPUs. 

The prototype kernels do not account for boundary conditions.  In 
order to avoid out-of-bounds accesses, the order-k kernel does not 
compute output for the first and last k/2 slices in the slowest 
dimension, while the k/2 boundary slices in each of the remaining 
4 directions are computed with data fetched at usual offsets.  
Consequently, the 4 boundaries are incorrect as at least one 
“radius” of the stencil extends into inappropriate data.  Since the 
intent of this study is to determine peak performance, we chose to 
ignore boundary conditions.  Furthermore, boundary processing 
varies based on application as well as implementation, making 
experiments with “general” code not feasible.  While we expect 
the performance to decrease once boundary handling is integrated, 
we believe performance reported below to be a reliable indication 
of current Tesla GPU capabilities. 

4.1 Stencil-only Computation 
Table 1 summarizes performance of the stencil-only kernel for 
varying orders in space as well as varying input volume sizes.  All 
configurations were processed by 16×16 threadblocks, operating 
on 16×16 output tiles.  Since tile size was fixed, the halos for the 
higher orders consumed a larger percentage of read bandwidth.  
For example, for the 8th order in space, halos (four 4×16 regions) 
consume as much bandwidth as the tile itself, leading to 2x read 
redundancy.  For the 12th order in space, read redundancy is 2.5x.  
Using 32×32 tiles would reduce redundancy to 1.5x and 1.75x, 
respectively. 

 

Table 1. 3D stencil-only throughput in Mpoints/s for various 

orders in space 

6 8 10 12

480x480x400 4,455 4,269 3,435 2,885

544x544x400 4,389 4,214 3,347 2,816

640x640x400 4,168 3,932 3,331 2,802

800x800x400 3,807 3,717 3,236 2,752

800x800x800 3,780 3,656 3,247 2,302

Order in space
Dimensions

 

 

For fixed volume dimensions, throughput decrease with increased 
orders is largely due to higher read redundancy, additional 
arithmetic being another contributing factor.  For a fixed order in 
space, increased memory footprint of larger volumes affects the 
TLB performance (480×480×400 working set is 703MB, while 
800×800×800 requires 3.8GB).  While throughput in Mpoints/s 

varied significantly across the configurations, memory throughput 
in GB/s (counting both reads and writes) was much more 
consistent, varying between 45 and 55 GB/s. 

4.2 3D Finite Difference of the Wave-

Equation 
Finite difference discretization of the wave equation is a major 
building block for the Reverse Time Migration (RTM) [6][1], a 
technique of great interest in seismic imaging.  While RTM has 
been known since 1980s, until very recently its computational 
cost has been too high for practical purposes.  Due to advances in 
computer architecture and the potential for higher quality results, 
adoption of the RTM for production seismic computing has 
started in the last couple of years.  The stencil-only computation is 
easily extended to the time-domain finite difference of the wave 
equation, second order in time (Equation 2 above). 

In addition to reading data from the past two time steps, array v 
(inverse of velocity squared, in practice) is added to the input.  
Computing an output element requires (7k/2) + 4 floating point 
operations and 4 memory accesses, not accounting for redundancy 
due to halos.  Therefore, ideal redundancy would be 4.  CUDA 
source code for the 4th order in space wave equation kernel (using 
16x16 tiles and threadblocks) is listed in Appendix A. 

 

Table 2.  3D FDTD (8th order in space, 2nd order in time) 

throughput in Mpoints/s 

dimx dimy dimz 16x16 32x32

320 320 400 2,870.7 2,783.5

480 480 480 2,965.5 3,050.5

544 544 544 2,786.5 3,121.6

640 640 400 2,686.9 3,046.8

800 800 200 2,518.3 3,196.9

data dimensions tile dimensions

 

 

Performance measurements for the 8th order in space are 
summarized in Table 2.  Two kernel versions were implemented.  
The first one utilizes 16×16 threadblocks and output tiles 
(redundancy is 5).  The second implementation used 32×16 
threadblocks to compute 32×32 output tiles (redundancy is 4.5).  
GPU performance is roughly an order of magnitude higher than a 
single 4-core Harpertown Xeon, running an optimized 
implementation of the same computation. 

4.3 Multi-GPU Implementation of the Wave-

Equation Finite Difference 
The working set for practical finite difference computations 
sometimes exceeds the 4 GB of memory available on a single 
GPU.  For example, processing a single shot (a unit of 
computation for RTM) can easily require more than 10 GB of 
storage.  It is therefore necessary to partition the data among 
several GPUs, at the same time scaling the performance.  For 
simplicity we will examine a 2-GPU case, which is 
straightforwardly extended to more GPUs. 



Table 3.  Multi-GPU 3D FDTD (8th order in space, 2nd order in time) performance and scaling 

dimx dimy dimz Mpnts/s scaling Mpnts/s scaling Mpnts/s scaling

480 480 800 2,986.85 1.00 5,944.98 1.99 11,845.90 3.97

544 544 400 2,826.35 1.00 5,545.63 1.96 6,453.15 2.28

544 544 800 2,736.89 1.00 5,459.69 1.99 11,047.20 4.04

640 640 640 2,487.17 1.00 5,380.89 2.16 10,298.97 4.14

640 640 800 2,433.94 1.00 5,269.04 2.16 10,845.55 4.46

1 GPU 2 GPUs 4 GPUsData dimensions

 

 

Given two GPUs and a computation of order k in space, data is 
partitioned by assigning each GPU half the data set plus (k/2) 
slices of ghost nodes (Figure 4).  Each GPU updates its half of the 
output, receiving the updated ghost nodes from the neighbor.  
Data is divided along the slowest varying dimension so that 
contiguous memory regions are copied during ghost node 
exchanges.  In order to maximize scaling, we overlap the 
exchange of ghost nodes with kernel execution.  Each time step is 
executed in two phases, as shown in Figure 5.  In the first phase, a 
GPU computes the region corresponding to the ghost nodes in the 
neighboring GPU.  In the second phase, a GPU executes the 
compute kernel on its remaining data, at the same time 
exchanging the ghost nodes with its neighbor.  For each CPU 
process controlling a GPU, the exchange involves three memory 
copies: GPU->CPU, CPU->CPU, and CPU->GPU.  CUDA 
provides asynchronous kernel execution and memory copy calls, 
which allow both the GPU and the CPU to continue processing 
during ghost node exchange. 

 

 

Figure 4.  Data distribution between two GPUs 

 

Extending the 2-GPU approach to more GPUs doubles the cost of 
ghost node exchange (each GPU has to communicate with two 
neighbors).  The increased communication cost is still effectively 
hidden for data sets large enough to warrant data partitioning 
among GPUs.  Performance results (using 16x16 tiles and 
threadblocks arranged as 16x16 threads) for up to 4 GPUs are 
summarized in Table 3.  As in the 2-GPU case, memory copies 
were optimized by partitioning data only along the slowest-
varying dimension.  Measurements were collected on an 
Infiniband-connected cluster, where each CPU node was 
connected to two Tesla 10-series GPUs (one half of a Tesla S1070 
1-U server, containing 4 GPUs).     

CPU-GPU communication was carried out via 
cudaMemcpyAsync calls, using page-locked memory on the CPU 

side.  MPI was used to spawn one CPU process per GPU.  CPU 
processes exchanged ghost nodes with MPI_Sendrcv calls. 

Table 3 indicates that communication and computation in Phase 2 
are effectively overlapped when using either 2 or 4 GPUs.  
Scaling is the speedup over a single GPU, achieved by the 
corresponding GPU number.  Note that only the smallest case 
(544×544×400 does not scale linearly with 4 GPUs.  This is due 
to the fact that each GPU computes only 100 slices in Phase 2, 
which takes significantly less time than corresponding 
communication.  Our experiments show that communication 
overhead is hidden as long as the number of slices per GPU is 200 
or greater.  Furthermore, we found that 2/3 of the communication 
time is spend in MPI_Sendrcv, the time for which should be 
further reduced by using the non-buffered version.  The 
superlinear speedup for the larger data sets is due to the decreased 
pressure on TLB when a data set is partitioned among several 
GPUs – each GPU traverses a fraction of the address space that a 
single GPU has to access. 

 

 

Figure 5.  Two phases of a time step for a 2-GPU 

implementation of FD 

5. CONCLUSTIONS AND FUTURE WORK 
We have described a GPU parallelization approach for 3D finite 
difference stencil computation that achieves approximately an 
order of magnitude speedup over similar seismic industry standard 
codes.  We also described the approach for utilizing multiple 
GPUs to solve the problem, achieving linear scaling with GPUs 
by using asynchronous communication and computation.  This 
allows for GPU processing of large data sets common in practice, 
often exceeding 10 GB in size.  There are at least two directions 
for further work.  One, it would be interesting to modify the 
parallelization to carry out several time-steps in shared memory 
for the smaller stencils.  Two, multi-GPU parallelization could 
also benefit from storing larger ghost regions and computing more 



than one time-step before communicating.  This would be 
particularly interesting for the smaller data sets, where 
communication overhead is close to, or even greater, than the 
computation time. 
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Appendix A: CUDA Source Code for a 25-Point Stencil 
 

__global__ void fwd_3D_16x16_order8(TYPE *g_output, TYPE *g_input, TYPE *g_vsq, // output initially contains (t-2) step 

 const int dimx, const int dimy, const int dimz) 

{ 

#define BDIMX 16 // tile (and threadblock) size in x 

#define BDIMY 16 // tile (and threadblock) size in y 

#define radius 4  // half of the order in space (k/2) 

 

__shared__ float s_data[BDIMY+2*radius][BDIMX+2*radius]; 

 

int ix  = blockIdx.x*blockDim.x + threadIdx.x; 

int iy  = blockIdx.y*blockDim.y + threadIdx.y; 

int in_idx  = iy*dimx + ix; // index for reading input 

int out_idx = 0;  // index for writing output  

int stride  = dimx*dimy; // distance between 2D slices (in elements)  

 

float infront1, infront2, infront3, infront4; // variables for input “in front of” the current slice 

float behind1, behind2, behind3, behind4; // variables for input “behind” the current slice 

floatcurrent;    // input value in the current slice 

 

int tx = threadIdx.x + radius;  // thread’s x-index into corresponding shared memory tile (adjusted for halos) 

int ty = threadIdx.y + radius;  // thread’s y-index into corresponding shared memory tile (adjusted for halos) 

 

// fill the "in-front" and "behind" data 

behind3  = g_input[in_idx]; in_idx += stride; 

behind2  = g_input[in_idx]; in_idx += stride; 

behind1  = g_input[in_idx]; in_idx += stride; 

current  = g_input[in_idx]; out_idx = in_idx; in_idx += stride; 

infront1 = g_input[in_idx]; in_idx += stride; 

infront2 = g_input[in_idx]; in_idx += stride; 

infront3 = g_input[in_idx]; in_idx += stride; 

infront4 = g_input[in_idx]; in_idx += stride; 

 

for(int i=radius; i<dimz-radius; i++) 

{ 

 ////////////////////////////////////////// 

 // advance the slice (move the thread-front) 

 behind4  = behind3; 

 behind3  = behind2; 

 behind2  = behind1; 

 behind1  = current; 

 current  = infront1; 

 infront1 = infront2; 

 infront2 = infront3; 

 infront3 = infront4; 

 infront4 = g_input[in_idx]; 

 

 in_idx  += stride; 

 out_idx += stride; 

 __syncthreads(); 

 

 ///////////////////////////////////////// 

 // update the data slice in smem 

 if(threadIdx.y<radius) // halo above/below 

 { 

 s_data[threadIdx.y][tx]              = g_input[out_idx-radius*dimx]; 

 s_data[threadIdx.y+BDIMY+radius][tx] = g_input[out_idx+BDIMY*dimx]; 

 } 

 if(threadIdx.x<radius) // halo left/right 

 { 

 s_data[ty][threadIdx.x]              = g_input[out_idx-radius]; 

 s_data[ty][threadIdx.x+BDIMX+radius] = g_input[out_idx+BDIMX]; 

 } 

 

 // update the slice in smem 

 s_data[ty][tx] = current; 

 __syncthreads(); 

 

 ///////////////////////////////////////// 

 // compute the output value 

 float temp = 2.f*current - g_output[out_idx]; 

 float div  = c_coeff[0] * current; 

 div += c_coeff[1]*( infront1 + behind1  

   + s_data[ty-1][tx] + s_data[ty+1][tx] + s_data[ty][tx-1] + s_data[ty][tx+1] ); 

 div += c_coeff[2]*( infront2 + behind2  

   + s_data[ty-2][tx] + s_data[ty+2][tx] + s_data[ty][tx-2] + s_data[ty][tx+2] ); 

 div += c_coeff[3]*( infront3 + behind3  

   + s_data[ty-3][tx] + s_data[ty+3][tx] + s_data[ty][tx-3] + s_data[ty][tx+3] ); 

 div += c_coeff[4]*( infront4 + behind4  

   + s_data[ty-4][tx] + s_data[ty+4][tx] + s_data[ty][tx-4] + s_data[ty][tx+4] ); 

 g_output[out_idx] = temp + div*g_vsq[out_idx]; 

} 

} 


