
3D Finite Difference Computation on GPUs using CUDA
Paulius Micikevicius

NVIDIA
2701 San Tomas Expressway

Santa Clara, CA 95050

ABSTRACT

In this paper we describe a GPU parallelization of the 3D finite
difference computation using CUDA. Data access redundancy is
used as the metric to determine the optimal implementation for
both the stencil-only computation, as well as the discretization of
the wave equation, which is currently of great interest in seismic
computing. For the larger stencils, the described approach
achieves the throughput of between 2,400 to over 3,000 million of
output points per second on a single Tesla 10-series GPU. This is
roughly an order of magnitude higher than a 4-core Harpertown
CPU running a similar code from seismic industry. Multi-GPU
parallelization is also described, achieving linear scaling with
GPUs by overlapping inter-GPU communication with
computation.

Categories and Subject Descriptors

D.1.3 [Concurrent Programming]: Parallel Programming.

General Terms

Algorithms, Performance, Measurement.

Keywords

Finite Difference, GPU, CUDA, Parallel Algorithms.

1. INTRODUCTION
In this paper we describe a parallelization of the 3D finite
difference computation, intended for GPUs and implemented
using NVIDIA’s CUDA framework. The approach utilizes
thousands of threads, traversing the volume slice-by-slice as a 2D
“front” of threads in order to maximize data reuse from shared
memory. GPU performance is measured for the stencil-only
computation (Equation 1), as well as for the finite difference
discretization of the wave equation. The latter is the basis for the
reverse time migration algorithm (RTM) [6] in seismic
computing.

An order-k in space stencil refers to a stencil that requires k input
elements in each dimension, not counting the element at the
intersection. Alternatively, one could refer to the 3D order-k
stencil as a (3k + 1)-point stencil. Equation below defines the
stencil computation for a three-dimensional, isotropic case.

t

zyx
D ,, refers to data point at position (x,y,z), computed at time-step

t, cj is a multiplicative coefficient applied to elements at distance j
from the output point.

()∑
=

+−+−+−

+
++++++=

2

1

,,,,,,,,,,,,,,0

1

,,

k

i

t

izyx

t

izyx

t

ziyx

t

ziyx

t

zyix

t

zyixi

t

zyx

t

zyx DDDDDDcDcD

The paper is organized as follows. Section 2 reviews the CUDA
programming model and GPU architecture. CUDA
implementation of the 3D stencil computation is described in
Section 3. Performance results are presented in Section 4.
Section 5 includes the conclusions and some directions for future
work.

Figure 1. A high-level view of GPU architecture.

2. CUDA AND GPU ARCHITECTURE
CUDA allows the programming of GPUs for parallel computation
without any graphics knowledge [5][7]. As shown in Figure 1, a
GPU is presented as a set of multiprocessors, each with its own
stream processors and shared memory (user-managed cache). The
stream processors are fully capable of executing integer and single
precision floating point arithmetic, with additional cores used for
double-precision. All multiprocessors have access to global
device memory, which is not cached by the hardware. Memory
latency is hidden by executing thousands of threads concurrently.
Register and shared memory resources are partitioned among the
currently executing threads. There are two major differences
between CPU and GPU threads. First, context switching between
threads is essentially free – state does not have to be
stored/restored because GPU resources are partitioned. Second,
while CPUs execute efficiently when the number of threads per
core is small (often one or two), GPUs achieve high performance
when thousands of threads execute concurrently.

CUDA arranges threads into threadblocks. All threads in a
threadblock can read and write any shared memory location
assigned to that threadblock. Consequently, threads within a
threadblock can communicate via shared memory, or use shared
memory as a user-managed cache since shared memory latency is
two orders of magnitude lower than that of global memory. A
barrier primitive is provided so that all threads in a threadblock
can synchronize their execution. More detailed descriptions of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GPGPU2, March 8, 2009, Washington D.C., US.
Copyright 2009 ACM 978-1-60558-517-8/09/03…$5.00.

the architecture and programming model can be found in [5]
[7][2].

The Tesla 10-series GPUs (Tesla S1060/S1070) contain 30
multiprocessors, each multiprocessor contains 8 streaming
processors (for a total of 240), 16K 32-bit registers, and 16 KB of
shared memory. Theoretical global-memory bandwidth is 102
GB/s, available global memory is 4GB.

3. EFFICIENT 3D STENCIL

COMPUTATION ON TESLA GPUs
Utilizing memory bandwidth efficiently is key to algorithm
implementation on GPUs, since global memory accesses are not
implicitly cached by the hardware. We use memory access

redundancy as a metric to assess implementation efficiency.
Specifically, redundancy is the ratio between the number of
elements accessed and the number of elements processed. Where
applicable, we refer to read redundancy, which does not include
writes in the access count. Write redundancy is defined similarly.
Ideally, read and write redundancies would be 1 for the stencil-
only computation, overall redundancy would be 2.

Figure 2. 16x16 data tile and halos for order-8 stencil in

shared memory

The naïve approach to compute an order-k stencil refetches all (3k
+ 1) input elements for every output value, leading to (3k + 1)
read redundancy. Our implementation reduces redundancy by
performing calculations from shared memory. Since 16KB of
shared memory available per multiprocessor is not sufficient to
store a significantly large 3D subdomain of a problem, a 2D tile is
stored instead (Figure 2). Extension of the computation to the 3rd
dimension is discussed in the next section. Threads are grouped
into 2D threadblocks to match data tiling, assigning one thread
per output element. Given an order-k stencil and n×m
threadblocks and output tiles, an (n + k)×(m + k) shared memory
array is needed to accommodate the data as well the four halo
regions. Even though space for k2 elements could be saved by
storing the halos separately (the four (k/2)×(k/2) corners of the
array are not used), savings are not significant enough to justify
increased code complexity. Since halo elements are read by at
least two threadblocks, the read redundancy of loading the data
into shared memory arrays is (n·m + k·n + k·m)/(n·m). For
example, read redundancy is 2 for an order-8 stencil when using
threadblocks configured as 16x16 threads (24×24 shared memory
array). Increasing threadblock and tile dimensions to 32×32
reduces redundancy to 1.5, in this case threadblocks contain 512
threads (arranged as 32x16), each thread computing two output
values.

3.1 Extending the Computation to 3D
Once a 2D tile and halos are loaded into shared memory, each
threadblock straightforwardly computes the 2D stencil for its
output tile. All the data is fetched from shared memory, the
latency of which is two orders of magnitude lower than that of
global memory. There are two approaches to extend the
computation to three dimensions: two-pass and single-pass.
These are similar to stencil approaches described for Cell
processors in [1][4].

As the name suggests, the two-pass approach traverses the input
volume twice. During the first pass only the 2D stencil values are
computed. The 1D stencil (in the remaining dimension) is
computed during the second pass, combining it with the partial
results from the first pass. Consequently, read redundancy is 3
plus redundancy due to halos – the first pass reads tiles and halos
into shared memory, the second pass reads the original input and
partial results. Returning to the example of an order-8 stencil and
16×16 tiles, read redundancy is 4. Since each pass writes output,
write redundancy is 2. Overall redundancy is 6, which is an
improvement over the naïve approach, which has redundancy of
26 (counting reads and writes). Efficiency can be further
increased with the single-pass approach.

Figure 3. Element re-use by a group of threads

The two passes described above can be merged into a single one.
Let z be the slowest varying dimension. If we assign a thread to
compute output values for a given column along z, no additional
shared memory storage is needed. Threads of a given threadblock
coherently traverse the volume along z, computing output for each
slice. While the elements in the current slice are needed for
computation by multiple threads, elements in the slices preceding
and succeeding the current z-position are used only by the threads
corresponding to the elements’ (x, y) position (Figure 3). Thus,
input elements in the current slice are stored in shared memory,
while each thread stores the input from the preceding/succeeding
k/2 slices it needs in local variables (which in CUDA are usually
placed in registers). Using the case depicted in Figure 3, the four
threads would access the 32 elements in the xy-plane from shared
memory, while the elements along the z axis would be stored in
corresponding thread’s registers. Once all the threads in a
threadblock write the results for the current slice, values in the
local variables are “shifted,” reading in a new element at distance
(k/2 + 1): the k local variables and shared memory are used as a
queue. Output is written exactly once, input is read with (n·m +
k·n + k·m)/(n·m) redundancy due to halos. For example,
redundancy for an order-8 stencil with 16x16 tiles is 3, compared
to 6 of the two-pass approach.

()







+++++++−= ∑

=

+−+−+−

−+

2

1

,,,,,,,,,,,,,,0,,

1

,,,,

1

,, 2
k

i

t

izyx

t

izyx

t

ziyx

t

ziyx

t

zyix

t

zyixi

t

zkyxzyx

t

zyx

t

zyx

t

zyx DDDDDDcDcvDDD (Equation 2)

4. EXPERIMENTAL RESULTS
This section describes experiments with two types of kernels –
stencil-only and finite difference of the wave equation.
Performance was measured on Tesla S1070 servers, containing
four GPUs each. S1070 servers were connected to cluster CPU
nodes running CUDA 2.0 toolkit and driver (64-bit RHEL).
Throughput in millions of output points per second (Mpoints/s)
was used as the metric. Multi-GPU experiments are also included
in this section, since practical working sets for the finite-
difference in time domain of the wave equation exceed the 4GB
memory capacity of currently available Tesla GPUs.

The prototype kernels do not account for boundary conditions. In
order to avoid out-of-bounds accesses, the order-k kernel does not
compute output for the first and last k/2 slices in the slowest
dimension, while the k/2 boundary slices in each of the remaining
4 directions are computed with data fetched at usual offsets.
Consequently, the 4 boundaries are incorrect as at least one
“radius” of the stencil extends into inappropriate data. Since the
intent of this study is to determine peak performance, we chose to
ignore boundary conditions. Furthermore, boundary processing
varies based on application as well as implementation, making
experiments with “general” code not feasible. While we expect
the performance to decrease once boundary handling is integrated,
we believe performance reported below to be a reliable indication
of current Tesla GPU capabilities.

4.1 Stencil-only Computation
Table 1 summarizes performance of the stencil-only kernel for
varying orders in space as well as varying input volume sizes. All
configurations were processed by 16×16 threadblocks, operating
on 16×16 output tiles. Since tile size was fixed, the halos for the
higher orders consumed a larger percentage of read bandwidth.
For example, for the 8th order in space, halos (four 4×16 regions)
consume as much bandwidth as the tile itself, leading to 2x read
redundancy. For the 12th order in space, read redundancy is 2.5x.
Using 32×32 tiles would reduce redundancy to 1.5x and 1.75x,
respectively.

Table 1. 3D stencil-only throughput in Mpoints/s for various

orders in space

6 8 10 12

480x480x400 4,455 4,269 3,435 2,885

544x544x400 4,389 4,214 3,347 2,816

640x640x400 4,168 3,932 3,331 2,802

800x800x400 3,807 3,717 3,236 2,752

800x800x800 3,780 3,656 3,247 2,302

Order in space
Dimensions

For fixed volume dimensions, throughput decrease with increased
orders is largely due to higher read redundancy, additional
arithmetic being another contributing factor. For a fixed order in
space, increased memory footprint of larger volumes affects the
TLB performance (480×480×400 working set is 703MB, while
800×800×800 requires 3.8GB). While throughput in Mpoints/s

varied significantly across the configurations, memory throughput
in GB/s (counting both reads and writes) was much more
consistent, varying between 45 and 55 GB/s.

4.2 3D Finite Difference of the Wave-

Equation
Finite difference discretization of the wave equation is a major
building block for the Reverse Time Migration (RTM) [6][1], a
technique of great interest in seismic imaging. While RTM has
been known since 1980s, until very recently its computational
cost has been too high for practical purposes. Due to advances in
computer architecture and the potential for higher quality results,
adoption of the RTM for production seismic computing has
started in the last couple of years. The stencil-only computation is
easily extended to the time-domain finite difference of the wave
equation, second order in time (Equation 2 above).

In addition to reading data from the past two time steps, array v
(inverse of velocity squared, in practice) is added to the input.
Computing an output element requires (7k/2) + 4 floating point
operations and 4 memory accesses, not accounting for redundancy
due to halos. Therefore, ideal redundancy would be 4. CUDA
source code for the 4th order in space wave equation kernel (using
16x16 tiles and threadblocks) is listed in Appendix A.

Table 2. 3D FDTD (8th order in space, 2nd order in time)

throughput in Mpoints/s

dimx dimy dimz 16x16 32x32

320 320 400 2,870.7 2,783.5

480 480 480 2,965.5 3,050.5

544 544 544 2,786.5 3,121.6

640 640 400 2,686.9 3,046.8

800 800 200 2,518.3 3,196.9

data dimensions tile dimensions

Performance measurements for the 8th order in space are
summarized in Table 2. Two kernel versions were implemented.
The first one utilizes 16×16 threadblocks and output tiles
(redundancy is 5). The second implementation used 32×16
threadblocks to compute 32×32 output tiles (redundancy is 4.5).
GPU performance is roughly an order of magnitude higher than a
single 4-core Harpertown Xeon, running an optimized
implementation of the same computation.

4.3 Multi-GPU Implementation of the Wave-

Equation Finite Difference
The working set for practical finite difference computations
sometimes exceeds the 4 GB of memory available on a single
GPU. For example, processing a single shot (a unit of
computation for RTM) can easily require more than 10 GB of
storage. It is therefore necessary to partition the data among
several GPUs, at the same time scaling the performance. For
simplicity we will examine a 2-GPU case, which is
straightforwardly extended to more GPUs.

Table 3. Multi-GPU 3D FDTD (8th order in space, 2nd order in time) performance and scaling

dimx dimy dimz Mpnts/s scaling Mpnts/s scaling Mpnts/s scaling

480 480 800 2,986.85 1.00 5,944.98 1.99 11,845.90 3.97

544 544 400 2,826.35 1.00 5,545.63 1.96 6,453.15 2.28

544 544 800 2,736.89 1.00 5,459.69 1.99 11,047.20 4.04

640 640 640 2,487.17 1.00 5,380.89 2.16 10,298.97 4.14

640 640 800 2,433.94 1.00 5,269.04 2.16 10,845.55 4.46

1 GPU 2 GPUs 4 GPUsData dimensions

Given two GPUs and a computation of order k in space, data is
partitioned by assigning each GPU half the data set plus (k/2)
slices of ghost nodes (Figure 4). Each GPU updates its half of the
output, receiving the updated ghost nodes from the neighbor.
Data is divided along the slowest varying dimension so that
contiguous memory regions are copied during ghost node
exchanges. In order to maximize scaling, we overlap the
exchange of ghost nodes with kernel execution. Each time step is
executed in two phases, as shown in Figure 5. In the first phase, a
GPU computes the region corresponding to the ghost nodes in the
neighboring GPU. In the second phase, a GPU executes the
compute kernel on its remaining data, at the same time
exchanging the ghost nodes with its neighbor. For each CPU
process controlling a GPU, the exchange involves three memory
copies: GPU->CPU, CPU->CPU, and CPU->GPU. CUDA
provides asynchronous kernel execution and memory copy calls,
which allow both the GPU and the CPU to continue processing
during ghost node exchange.

Figure 4. Data distribution between two GPUs

Extending the 2-GPU approach to more GPUs doubles the cost of
ghost node exchange (each GPU has to communicate with two
neighbors). The increased communication cost is still effectively
hidden for data sets large enough to warrant data partitioning
among GPUs. Performance results (using 16x16 tiles and
threadblocks arranged as 16x16 threads) for up to 4 GPUs are
summarized in Table 3. As in the 2-GPU case, memory copies
were optimized by partitioning data only along the slowest-
varying dimension. Measurements were collected on an
Infiniband-connected cluster, where each CPU node was
connected to two Tesla 10-series GPUs (one half of a Tesla S1070
1-U server, containing 4 GPUs).

CPU-GPU communication was carried out via
cudaMemcpyAsync calls, using page-locked memory on the CPU

side. MPI was used to spawn one CPU process per GPU. CPU
processes exchanged ghost nodes with MPI_Sendrcv calls.

Table 3 indicates that communication and computation in Phase 2
are effectively overlapped when using either 2 or 4 GPUs.
Scaling is the speedup over a single GPU, achieved by the
corresponding GPU number. Note that only the smallest case
(544×544×400 does not scale linearly with 4 GPUs. This is due
to the fact that each GPU computes only 100 slices in Phase 2,
which takes significantly less time than corresponding
communication. Our experiments show that communication
overhead is hidden as long as the number of slices per GPU is 200
or greater. Furthermore, we found that 2/3 of the communication
time is spend in MPI_Sendrcv, the time for which should be
further reduced by using the non-buffered version. The
superlinear speedup for the larger data sets is due to the decreased
pressure on TLB when a data set is partitioned among several
GPUs – each GPU traverses a fraction of the address space that a
single GPU has to access.

Figure 5. Two phases of a time step for a 2-GPU

implementation of FD

5. CONCLUSTIONS AND FUTURE WORK
We have described a GPU parallelization approach for 3D finite
difference stencil computation that achieves approximately an
order of magnitude speedup over similar seismic industry standard
codes. We also described the approach for utilizing multiple
GPUs to solve the problem, achieving linear scaling with GPUs
by using asynchronous communication and computation. This
allows for GPU processing of large data sets common in practice,
often exceeding 10 GB in size. There are at least two directions
for further work. One, it would be interesting to modify the
parallelization to carry out several time-steps in shared memory
for the smaller stencils. Two, multi-GPU parallelization could
also benefit from storing larger ghost regions and computing more

than one time-step before communicating. This would be
particularly interesting for the smaller data sets, where
communication overhead is close to, or even greater, than the
computation time.

6. ACKNOWLEDGMENTS
The author would like to thank Scott Morton of Hess Corporation
for extensive assistance with the finite difference discretization of
the wave equation.

7. REFERENCES
[1] Baysal, E., Kosloff, D. D., and Sherwood, J. W. C. 1983.

Reverse-time migration. Geophysics, 48, 1514-1524.
[2] CUDA Programming Guide, 2.1, NVIDIA.

http://developer.download.nvidia.com/compute/cuda/2_1/too
lkit/docs/NVIDIA_CUDA_Programming_Guide_2.1.pdf

[3] Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J.,
Oliker, L., Patterson, D., Shalf, J., and Yelick, K. 2008.
Stencil computation optimization and auto-tuning on state-
of-the-art multicore architectures. In Proceedings of the 2008

ACM/IEEE Conference on Supercomputing (Austin, Texas,

November 15 - 21, 2008). Conference on High Performance
Networking and Computing. IEEE Press, Piscataway, NJ, 1-
12.

[4] Kamil, S., Datta, K., Williams, S., Oliker, L., Shalf, J., and
Yelick, K. 2006. Implicit and explicit optimizations for
stencil computations. In Proceedings of the 2006 Workshop

on Memory System Performance and Correctness (San Jose,
California, October 22 - 22, 2006). MSPC '06. ACM, New
York, NY, 51-60.

[5] Lindholm, E., Nickolls, J., Oberman, S., Montrym, J. 2008.
NVIDIA Tesla: A Unified Graphics and Computing
Architecture. IEEE Micro 28, 2 (Mar. 2008), 39-55.

[6] McMechan, G. A. 1983. Migration by extrapolation of time-
dependent boundary values. Geophys. Prosp., 31, 413-420.

[7] Nickolls, J., Buck, I., Garland, M., and Skadron, K. 2008.
Scalable Parallel Programming with CUDA. Queue 6, 2
(Mar. 2008), 40-53.

Appendix A: CUDA Source Code for a 25-Point Stencil

__global__ void fwd_3D_16x16_order8(TYPE *g_output, TYPE *g_input, TYPE *g_vsq, // output initially contains (t-2) step

 const int dimx, const int dimy, const int dimz)

{

#define BDIMX 16 // tile (and threadblock) size in x

#define BDIMY 16 // tile (and threadblock) size in y

#define radius 4 // half of the order in space (k/2)

__shared__ float s_data[BDIMY+2*radius][BDIMX+2*radius];

int ix = blockIdx.x*blockDim.x + threadIdx.x;

int iy = blockIdx.y*blockDim.y + threadIdx.y;

int in_idx = iy*dimx + ix; // index for reading input

int out_idx = 0; // index for writing output

int stride = dimx*dimy; // distance between 2D slices (in elements)

float infront1, infront2, infront3, infront4; // variables for input “in front of” the current slice

float behind1, behind2, behind3, behind4; // variables for input “behind” the current slice

floatcurrent; // input value in the current slice

int tx = threadIdx.x + radius; // thread’s x-index into corresponding shared memory tile (adjusted for halos)

int ty = threadIdx.y + radius; // thread’s y-index into corresponding shared memory tile (adjusted for halos)

// fill the "in-front" and "behind" data

behind3 = g_input[in_idx]; in_idx += stride;

behind2 = g_input[in_idx]; in_idx += stride;

behind1 = g_input[in_idx]; in_idx += stride;

current = g_input[in_idx]; out_idx = in_idx; in_idx += stride;

infront1 = g_input[in_idx]; in_idx += stride;

infront2 = g_input[in_idx]; in_idx += stride;

infront3 = g_input[in_idx]; in_idx += stride;

infront4 = g_input[in_idx]; in_idx += stride;

for(int i=radius; i<dimz-radius; i++)

{

 //

 // advance the slice (move the thread-front)

 behind4 = behind3;

 behind3 = behind2;

 behind2 = behind1;

 behind1 = current;

 current = infront1;

 infront1 = infront2;

 infront2 = infront3;

 infront3 = infront4;

 infront4 = g_input[in_idx];

 in_idx += stride;

 out_idx += stride;

 __syncthreads();

 ///

 // update the data slice in smem

 if(threadIdx.y<radius) // halo above/below

 {

 s_data[threadIdx.y][tx] = g_input[out_idx-radius*dimx];

 s_data[threadIdx.y+BDIMY+radius][tx] = g_input[out_idx+BDIMY*dimx];

 }

 if(threadIdx.x<radius) // halo left/right

 {

 s_data[ty][threadIdx.x] = g_input[out_idx-radius];

 s_data[ty][threadIdx.x+BDIMX+radius] = g_input[out_idx+BDIMX];

 }

 // update the slice in smem

 s_data[ty][tx] = current;

 __syncthreads();

 ///

 // compute the output value

 float temp = 2.f*current - g_output[out_idx];

 float div = c_coeff[0] * current;

 div += c_coeff[1]*(infront1 + behind1

 + s_data[ty-1][tx] + s_data[ty+1][tx] + s_data[ty][tx-1] + s_data[ty][tx+1]);

 div += c_coeff[2]*(infront2 + behind2

 + s_data[ty-2][tx] + s_data[ty+2][tx] + s_data[ty][tx-2] + s_data[ty][tx+2]);

 div += c_coeff[3]*(infront3 + behind3

 + s_data[ty-3][tx] + s_data[ty+3][tx] + s_data[ty][tx-3] + s_data[ty][tx+3]);

 div += c_coeff[4]*(infront4 + behind4

 + s_data[ty-4][tx] + s_data[ty+4][tx] + s_data[ty][tx-4] + s_data[ty][tx+4]);

 g_output[out_idx] = temp + div*g_vsq[out_idx];

}

}

